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Setup





Motivation & Applications

•

•

•

•

Animal herding: giraffes in Kenya

Social networks, epidemiological concerns 

Economic agents: funds, companies, people

Political actors and their voting patterns



Guiding Question

What is the relationship between the vertices as they evolve over time?



Previous Approaches

•

•

•

•

•

Aggregation: convert dynamic graph to static one

Community detection (heuristics)

Evolutionary clustering

Online algorithms

Machine Learning (GNNs, GATs, etc.)



Our Approach: Spatiotemporal Graph k-means (STGkM)

1.

2.

3.

4.

5.

Practical + Computable

Unsupervised with one parameter

Spatiotemporal smoothness

Theoretical guarantees

Experimental validation



The Method



Mathematical Goal

Can we find a "good" partition of the vertices?

partition of k elements



Primer: shortest journey

The shortest dynamic path between two vertices traversing one edge at a time.

 



Primer: shortest journey

The shortest dynamic path between two vertices traversing one edge at a time.

 



Mathematical Goal

Can we find a "good" partition of the vertices?

good: minimizes all shortest journeys



"k-means" Ideal Objective

distance based on shortest journey

all possible 
clusterings over 
time & space

number of elements in our partition
set of vertices

timesteps

"participation"

regularization matrix



Relaxed Objective



Algorithm Overview

1.

2.

3.

4.

Solve the relaxed objective (using updated versions of classical techniques)

Find cluster membership of each vertex at each timestep

Collect information over time for each vertex

Use agglomerative (or other) static clustering for each vertex based on cluster membership



Theoretical Results



"Standard" Dynamic Networks

•

•

•

•

•

A side quest: developing "standard" dynamic networks to test things with.

Analogy with static graphs:

Cliques and friends: K5, K3,3; etc.

Paths

Cycles



Theorem 1. Connected Components




If a (non-stranding) dynamic network has self-loops, then using STGkM is just connected 

components.



Theorem 2. Single Component

For certain connected graphs without self-loops, 

STGkM makes clusters that are more "correct" than 

connected components because connected 

components is a strong definition of a cluster.​



Theorem 3. Better than Aggregation

STGkM makes clusters that are more "correct" than 

simply counting the total number of edges between 

two vertices over time (because there are ​dynamic 

networks with a uniform number of total edges, but 

multiple obvious clusters).



Theorem 4. Works in the Stochastic Setting

STGkM works in expectation.



Finding k with the Elbow Method



Experimental Results



Synthetic Data



Rollcall

1.

2.

3.

Vertices: member of US House of Representatives

Timestep: each rollcall vote ordered over time

Edges: two members are connected at a timestep iff they vote the same way



Rollcall: Number of Clusters



Rollcall: Swing Votes



Journal Communities

1.

2.

3.

Vertices: journals

Timestep: year

Edges with weights: number of citations between journals



Journal Communities



Social Datasets

1.

2.

Facebook communities

Reddit communities



Conclusions & Future Work



Postscript: Industry Mathematics



Thank     you


