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Overview

1. Brief mathematical introduction
2. Some observations and conjectures
3. An ML thing (if we have time)



🧮 Math Intro 🔢



A simple graph



A dynamic graph

https://docs.google.com/file/d/1yGAhjVjlrdwDacNZqe1GW9APQ44Wyq80/preview


Definition: Dynamic Graph



Dynamic 
Graphs
are Everywhere

● Commute networks
● Animal interaction networks
● Opinion dynamics
● Cell-cell signaling
● Social networks
● Satellite communication 

networks
● Basketball, sports
● Bird flocking



NYC Metro Area Commute Network
Dabke, Karntikoon, Aluru, Singh, Chazelle. Network-augmented compartmental models to track asymp. disease spread. (pre-print)



Transit Networks (GTFS)
Dabke, Green. Analyzing transit networks with ideal routing machines. (pre-print)



Animal herding networks
Dorabiala, Dabke, et al. Spatiotemporal k-means. (pre-print)

https://docs.google.com/file/d/1i5S9Qj6tU6CeFcLk7vbcLwoei5hJ3pUt/preview


Embryos: spatial and chemical connectivity

https://docs.google.com/file/d/13RGSLvewQpohdtIQU9uP1l54j-_Knbc8/preview


Basketball
Dabke, Chazelle. Extracting semantic information from dynamic graphs of geometric data.
Dabke, Taylor. Play classification in basketball networks. (internal publication; pre-print)

https://docs.google.com/file/d/1iI1xYZfVc9oEJZx7JG-gTiww0lc8bauF/preview


NASA: Satellites
Cleveland, Dabke, et al. Introducing tropical geometric approaches to delay tolerant networking optimization.
Hylton, Dabke, et al. A survey of mathematical structures for lunar networks.

https://docs.google.com/file/d/1JZXMVcGkeCnhLdTgtsqh8MplnWLEknb8/preview
https://docs.google.com/file/d/1nkiz_jcnSdLm9WiljVopnuv0jYHWJ62d/preview


Some Problems



Problem
Local ≠ Global



The alternating cycle: a discrete-time sequence

t = 1, 3, 5, ... t = 2, 4, 6, ...



Dynamical system: move one edge at each time step

t = 1, 3, 5, ... t = 2, 4, 6, ...



Fact: max diameter is number of vertices (if connected)

t = 1, 3, 5, ... t = 2, 4, 6, ...



t = 1



t = 2



t = 3



t = 4



t = 5



Dynamically disconnected



Idea: time-expanded graph

t = 1 t = 2 t = 3 t = 4



Observation: disconnected => dynamically disconnected?

t = 1 t = 2 t = 3 t = 4



This one?

t = 1 t = 2 t = 3 t = 4



Disconnected again

t = 1 t = 2 t = 3 t = 4



Time-expanded fixed cycle
t = 1, 2, 3, 4, ...

t = 1 t = 2 t = 3 t = 4



t = 1



t = 2



t = 3



t = 4



t = 5



Problem
𝛎 = n * t



too many nodes

t = 1 t = 2 t = 3 t = 4



Many Problems Don’t “Just Work”

● Can we relate static and dynamic properties?
● How do we recover classical algorithms?
● Is there an efficient way to do all this?



🤓 Theory 💡



Two Orthogonal Dichotomies
Length

finite vs. infinite

Discretization

discrete-time vs. continuous-time



Dynamic 
Connectivity



Journeys are
Dynamic Paths



t = 1



t = 2



t = 3



t = 4



t = 5



Definition: Dynamic Diameter

● discrete-time (infinite or finite)
● defined at each timestep

○ itʼs a sequence, not a number

● max of
○ shortest journey between all vertex pairs



Definition: Dynamically Connected

● Connected if diameter is always finite
● Uniformly connected if bounded



Proposition (We Didn’t Mess Up I)

If at any time a vertex has no outbound edges, the graph is dynamically disconnected.



Proposition (We Didn’t Mess Up II)

For a fixed dynamic sequence: diameter equals that of base graph.



t = 1



t = 2



t = 3



t = 4



t = 5



Question
When does static 
imply dynamic?



Result: Self-Loops are Sufficient

Static connectivity implies dynamic connectivity if self-loops.

Other notes:

● Stronger (but more technical): weak monotonicity is sufficient.
● Uniform bound: number of vertices



t = 1



t = 2



t = 3



t = 4



t = 5



t = 6



t = 7



Recall



t = 1



t = 2



t = 3



t = 4



Dynamic diameter is ∞



Fixed with 
Self-Loops



t = 1



t = 2



t = 3



t = 4



t = 5



t = 6



t = 7



t = 8



Dynamic diameter is finite



Bound Achieved



t = 1



t = 2



t = 3



t = 4



Observation
Finding Conditions 
is Difficult



Idea
Stochastic Case



Observation: Force Edges to Move

● A particle can get pathologically “stuck”
● Require edges to change around

○ Ensure that each possible edge appears infinitely often?



Model: Dynamic Erdős-Rényi

● Fix edge probability p ∈ (0, 1)
● At every time step for every edge, flip a (biased) coin:

○ If heads, put the edge in
○ Otherwise, leave the edge out

● Note: edges across time are i.i.d. Bernoulli



Observation
Independence 
does not work



Proof: Independence => Disconnected

For each vertex at each timestep: probability of no outbound edges is (1 - p)n, which is 
non-zero.



However ...

● Tweak: reflip all coins for a vertex if it has no outbound edges
○ Lose independence (a bit subtle)

● Based on simulations, conjecture: diameter is
○ constant if p constant
○ log n if p is (log n) / n



Observation
Self-loops are 
overpowered



Model: Dynamic Erdős-Rényi with Self-Loops

● Put in all self-loops
● Generate other edges (u, v) where u ≠ v

○ Fix edge probability pu,v ∈ (0, 1)
○ At every time step, flip a (biased) coin:

■ if heads, put in edge
■ otherwise, no edge



Proposition: Almost Surely Connected

1. Observation: every edge occurs infinitely often
2. By weak monotonicity, almost surely connected
3. Once connected, can never disconnect
4. Based on simulations, conjecture: diameter is

a. constant if p constant
b. log n if p is (log n) / n



Remaining Work

1. More rigorous treatment of non-self-loop case
2. Proof of proposed bounds
3. Additional models



😎 Applications Abound 🧪



Dynamic Graph Projects

1. Viral spread across connected populations
a. Rumors
b. COVID-19

2. Basketball
a. Using TDA
b. Using ML

3. Space!
a. Contact graph routing
b. Tropical geometry

4. Others: animal clustering, transit, embryos, opinion dynamics



🤖 Machine Learning 🏀



Duke v. UNC (booooo!)
Multi-agent system (invasion sport)



Raw Trajectory Data



Dataset

● (x, y)-coordinates of offense, defense, basketball
● 25 frames per second (40ms per frame)



Model Goals

1. Formation discovery: a semantic understanding of the functional roles of players
2. Compression and dimension reduction: an efficient representation of a game, as 

player trajectory data is large and difficult to interpret
3. Predictive power: a mechanism for predicting trajectories of players
4. Synthetic generation: a tool for creating synthetic, but “realistic,” data



Prior Work

1. Trajectory Prediction: related to predictive power and synthetic generation
2. Role Discovery: related to formation discovery
3. Network Analysis: related to high compression and dimension reduction



Model Pipeline



Step 1: Dynamic Passing Network



Observation
218 Graphs to 
Isomorphism

https://oeis.org/A000273
https://oeis.org/A000273


Step 2: Networks to Labels

1. Compute library of graphs seen in data
2. Assign each a unique label (frequency-based?)
3. Convert networks to labels



Passing Graphy Library



Interlude: Jump Markov



Interlude: Jump Markov

continuous-time jump 
Markov process



Interlude: Jump Markov

Poisson counting process



Interlude: Jump Markov
discrete-time Markov 
chain



Interlude: Jump Markov



Idea: Semantic “Extraction”

1. Take library of passing graphs as tokens
2. Use NLP model to learn as a “language”
3. Good model: Transformer



Transformer Architecture



Experiment

● 40-10 prediction task
● Feed in graph data, along with base position data
● Predict trajectories
● Compare against true trajectories with MSE



66%
reduction in loss against benchmark

(40–10 trajectory prediction task)



🔮 Future Work 🔬



Theory

1. Further extensions of static properties and their relationship to their dynamic 
counterparts

2. Analysis of the stochastic setting
3. General framework for summarization
4. Clustering (spatiotemporal k-means)
5. Generalized optimal routing
6. Periodic systems



Applications

1. Animal herding behavior
2. General Transit Feed Specification (GTFS)
3. Twitter data
4. Additional satellite data



🙏 Acknowledgements 🫶



🙋 Q&A 🙃


