

FPO | Dynamic Graphs

Sherrerd Hall 101; May 3, 2023 @ 4:30 PM
Devavrat Vivek Dabke

Acknowledgements \square

Overview

1. Brief mathematical introduction
2. Theoretical observations and conjectures
3. Application Domains
a. Basketball (with ML)
b. Space with NASA

A simple graph

A dynamic graph

Definition: Dynamic Graph

Dynamic graph $\mathcal{G}=\left(G_{t}\right)_{t \in \mathbb{T}}$ where

1. totally ordered indexing set \mathbb{T}
2. fixed finite vertex set V
3. edge set sequence $\left(E_{t} \subseteq V \times V\right)_{t \in \mathbb{T}}$
4. $G_{t}=\left(V, E_{t}\right)$

Dynamic Graphs

are Everywhere

- Commute networks
- Animal interaction networks
- Opinion dynamics
- Cell-cell signaling
- Social networks
- Satellite communication networks
- Basketball, sports
- Bird flocking

NYC Metro Area Commute Network

Dabke, Karntikoon, Aluru, Singh, Chazelle. Network-augmented compartmental models to track asymp. disease spread. (pre-print)

Transit Networks (GTFS)

Dabke, Green. Analyzing transit networks with ideal routing machines. (pre-print)

Animal herding networks
Dorabiala, Dabke, et al. Spatiotemporal k-means. (pre-print)

Embryos: spatial and chemical connectivity

Basketball

Dabke, Chazelle. Extracting semantic information from dynamic graphs of geometric data.
Dabke, Taylor. Play classification in basketball networks. (internal publication; pre-print)

CLASSIFIED

NASA: Satellites

NASA: Satellites

Cleveland, Dabke, et al. Introducing tropical geometric approaches to delay tolerant networking optimization.
Hylton, Dabke, et al. A survey of mathematical structures for lunar networks.

Some Problems

Problem

Local \neq Global

The alternating cycle: a discrete-time sequence

Dynamical system: move one edge at each time step

Fact: max diameter is number of vertices (if connected)

Dynamically disconnected

Idea: time-expanded graph

Observation: disconnected => dynamically disconnected?

This one?

Disconnected again

Time-expanded fixed cycle

$t=1,2,3,4, \ldots$

$$
t=2
$$

$$
00
$$

Problem
$\boldsymbol{v}=\mathbf{n} * \mathrm{t}$

too many nodes

Many Problems Don’t "Just Work"

- Can we relate static and dynamic properties?
- How do we recover classical algorithms?
- Is there an efficient way to do all this?

Two Orthogonal Dichotomies

Length

finite vs. infinite

Discretization
discrete-time vs. continuous-time

Three Results

I. Define dynamic analogs of static properties and relate them [2]
II. Graph summarization: make representations more efficient [1]
III. Connect to algebraic topology [1, 2]

1. Cleveland, Dabke, et al. Introducing tropical geometric approaches to delay tolerant networking optimization.
2. Hylton, Dabke, et al. A survey of mathematical structures for lunar networks.

Dynamic
Connectivity

Fourneys are Dynamic Paths

$$
t=2
$$

$$
00
$$

Definition: Dynamic Diameter

- discrete-time (infinite or finite)
- defined at each timestep
- it's a sequence, not a number
- max of
- shortest journey between all vertex pairs

Definition: Dynamically Connected

- Connected if diameter is always finite
- Uniformly connected if bounded

Proposition (We Didn’t Mess Up I)

If at any time a vertex has no outbound edges, the graph is dynamically disconnected.

Proposition (We Didn’t Mess Up II)

For a fixed dynamic sequence: diameter equals that of base graph.

$$
t=2
$$

$$
00
$$

Ouestion

When does static imply dynamic?

Result: Self-Loops are Sufficient

Static connectivity implies dynamic connectivity if self-loops.

Other notes:

- Stronger (but more technical): weak monotonicity is sufficient.
- Uniform bound: number of vertices

$$
\because \bullet
$$

$$
\bullet 0
$$

Recall

Dynamic diameter is ∞

Fixed with Self-Loops

$$
\bullet 0
$$

$$
0
$$

Dynamic diameter is finite

Bound Achieved

Observation

 Finding Conditions is Difficult
Idea

Stochastic Case

Observation: Force Edges to Move

- A particle can get pathologically "stuck"
- Require edges to change around
- Ensure that each possible edge appears infinitely often?

Model: Dynamic Erdős-Rényi

- Fix edge probability $p \in(0,1)$
- At every time step for every edge, flip a (biased) coin:
- If heads, put the edge in
- Otherwise, leave the edge out
- Note: edges across time are i.i.d. Bernoulli

Observation

Independence
does not work

Proof: Independence => Disconnected

For each vertex at each timestep: probability of no outbound edges is $(1-p)^{n}$, which is non-zero.

However ...

- Tweak: reflip all coins for a vertex if it has no outbound edges
- Lose independence (a bit subtle)
- Based on simulations, conjecture: diameter is
- constant if p constant
- $\log n$ if p is $(\log n) / n$

Observation

Self-loops are overpowered

Model: Dynamic Erdős-Rényi with Self-Loops

- Put in all self-loops
- Generate other edges (u, v) where $u \neq v$
- Fix edge probability $\mathrm{p}_{\mathrm{u}, \mathrm{v}} \in(0,1)$
- At every time step, flip a (biased) coin:
- if heads, put in edge
- otherwise, no edge

Proposition: Almost Surely Connected

1. Observation: every edge occurs infinitely often
2. By weak monotonicity, almost surely connected
3. Once connected, can never disconnect
4. Based on simulations, conjecture: diameter is
a. constant if p constant
b. $\quad \log n$ if p is $(\log n) / n$

Remaining Work

1. More rigorous treatment of non-self-loop case
2. Proof of proposed bounds
3. Additional models

Three Results

†. Define dynamic analegs ofstatic properties and relate them
II. Graph summarization: make representations more efficient
III. Connect to algebraic topology

Graph

Summarization

Idea

$\boldsymbol{v}=\mathrm{n} * \mathrm{t}$ is bad n is okay

Conversion

Strategies: Depends on Context

- Idea: each edge has time-based weight function
- Weight can represent
- Capacity
- Traversal time
- Traversal speed
- Bandwidth
- etc.
- Inspired by centrality, take some "summary" of these functions

Shortest Path/Journey Participation

how often an edge appear in shortest paths or journeys

ex 1: Instant Path Summarization

1. Each edge has a (possibly infinite) cost as a function of time
2. Frozen in time, each path has a cost
3. Frozen in time, we can pick optimal paths if
a. they have finite cost AND
b. they have least cost

ex 1: Path Participation Function

$$
\begin{gathered}
\omega(P)=\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_{0}^{\tau} \mathbf{1}_{P}(t) \mathrm{d} t \\
\bar{\omega}(e)=\sum_{P \in \mathcal{P}: e \in P} \omega(P)
\end{gathered}
$$

ex 1. Weighted Static Graph

1. Started with: graph with time-dependent edge weight cost function
2. Ended with: graph with static edge weights
a. Related to edge centrality measures
3. We can perform further analysis
a. Katz centrality, etc.

ex 2. Traversal-Time Journey Summarization

1. Each edge has a (possibly infinite) traversal time as function of time a. If you start at time t, you will take $w(t)$ units of time to traverse
2. Compute shortest journeys
3. Compute shortest-path participation for edges

ex 2. Traversal Time

$$
\nu_{e}(t)=\frac{1}{w_{e}(t)}
$$

The velocity across an edge

$$
\operatorname{tcs}^{s}(e)=\left\{x: \int_{s}^{x} \nu_{e}(t) \mathrm{d} t \geq 1\right\}
$$

The traversal completion set: at what time will we be done?

$$
\operatorname{tt}^{s}(e)=\inf \left\{\operatorname{tcs}^{s}(e)\right\}-s
$$

The traversal time: how long does it take to traverse the edge?

ex 2. Path Length

ex 2. Path Length

ex 2. Path Length

$$
\begin{aligned}
\mathrm{tt}^{s}(P)_{1} & =\mathrm{tt}^{s}\left(e_{1}\right) \\
\operatorname{tet}^{s}(P)_{1} & =\mathrm{tet}^{s}\left(e_{1}\right) \\
\mathrm{tt}^{s}(P)_{2} & =\mathrm{tt}^{\mathrm{tet}^{s}(P)_{1}}\left(e_{2}\right) \\
\operatorname{tet}^{s}(P)_{2} & =\operatorname{tet}^{s}(P)_{1}+\mathrm{tt}^{s}(P)_{2} \\
& \vdots \\
\mathrm{tt}^{s}(P)_{k} & =\mathrm{tt}^{\mathrm{tet}^{s}(P)_{k-1}}\left(e_{k}\right) \\
\operatorname{tet}^{s}(P)_{k} & =\operatorname{tet}^{s}(P)_{k-1}+\mathrm{tt}^{s}(P)_{k}
\end{aligned}
$$

$$
\mathrm{tt}^{s}(P)=\mathrm{tt}^{s}(P)_{k}
$$

The path traversal time: how long does it take to traverse a path starting at time s?

ex 2. Final Step

1. We can define shortest paths at each time step if
a. they have finite traversal time
b. they have least traversal time
2. Then compute path participation as before

Summarization

Pros

- Do expensive computation upfront
- Compressed representation
- Extract relevant and meaningful information for application
- Creates a static graph, which we know more about than dynamic ones

Cons

- Inherently lossy
- Potentially expensive to compute
- Very specific to application
- Numerical issues

Extensions

1. Introduce additional summarization methods
2. Create a general (categorical?) framework for:
a. Defining edge functions
b. Summarization methods
c. Analysis of summary graphs

Three Results

1. Define dynamic analogs of static properties and relate them
H. Graph summarization: make representations more efficient
III. Connect to algebraic topology

Algebraic Topology

Three Results

1. Define dynamic analogs of static properties and relate them
H. Graph summarization: make representations more efficient
II. Connect to algebraic topology

3y Applications Abound

Dynamic Graph Projects

1. Viral spread across connected populations
a. Rumors
b. COVID-19
2. Basketball
a. Using TDA
b. Using ML
3. Space!
a. Contact graph routing
b. Tropical geometry
4. Others: animal clustering, transit, embryos, opinion dynamics

\ldots Machine Learning

Duke v. UNC (booooo!)
Multi-agent system (invasion sport)

Raw Trajectory Data

Dataset

- (x, y)-coordinates of offense, defense, basketball
- 25 frames per second (40ms per frame)

Model Goals

1. Formation discovery: a semantic understanding of the functional roles of players
2. Compression and dimension reduction: an efficient representation of a game, as player trajectory data is large and difficult to interpret
3. Predictive power: a mechanism for predicting trajectories of players
4. Synthetic generation: a tool for creating synthetic, but "realistic," data

Prior Work

1. Trajectory Prediction: related to predictive power and synthetic generation
2. Role Discovery: related to formation discovery
3. Network Analysis: related to high compression and dimension reduction

Model Pipeline

Step 1: Dynamic Passing Network

Observation

218 Graphs to Isomorphism

Step 2: Networks to Labels

1. Compute library of graphs seen in data
2. Assign each a unique label (frequency-based?)
3. Convert networks to labels

Passing Graphy Library

Interlude: Jump Markov

$$
X(t)=E_{N(t)}
$$

Interlude: Jump Markov

$$
X(t)=E_{N(t)}
$$

continuous-time jump
Markov process

Interlude: Jump Markov

$$
X(t)=E_{N(t)}
$$

Poisson counting process

Interlude: Jump Markov

discrete-time Markov
chain

$$
X(t)=E_{N(t)}
$$

Interlude: Jump Markov

$$
X(t)=E_{N(t)}
$$

Idea: Semantic "Extraction"

1. Take library of passing graphs as tokens
2. Use NLP model to learn as a "language"
3. Good model: Transformer

Transformer Architecture

Experiment

- 40-10 prediction task
- Feed in graph data, along with base position data
- Predict trajectories
- Compare against true trajectories with MSE

66\%

reduction in loss against benchmark (40-10 trajectory prediction task)

2 Space

Satellites

More Satellites

Even More Satellites

Contact Graph Routing

1. Satellites, ground stations, etc. moving in space
a. Data tells us when two will make "contact" with each other
b. Format is a "contact graph"
c. Graph is dynamic and periodic (idealized)
2. Task: route information across network
a. High latency
b. Changing bandwidth + speed
c. Low storage
d. High error rate

Current Approach

Send information in packets and repeat 10 times based on known orbit schedule.

Goal
Can we do better?

Defining "Better"

1. Increase bandwidth (worst case is 2 kbps)
2. Decrease latency (limited by speed of light)
a. 1.3 seconds to Moon
b. ~ 25 minutes to Mars
c. 5.5 hours to Pluto
3. Decrease error rate
4. Add features
a. Packet prioritization
b. Broadcasting

Defining "Better"

1. Increase bandwidth (worst case is 2 kbps)
2. Decrease latency (limited by speed of light)
a. 1.3 seconds to Moon
b. ~ 25 minutes to Mars
c. 5.5 hours to Pluto
3. Decrease error rate
4. Add features
a. Packet prioritization
b. Broadcasting

Generalization of Jowsig

1. Start with weighted digraph
2. Perform Dijkstra's repeatedly
3. Generate shortest path trees
4. Repeat until we reach fixed point

Future Work

Theory

1. Further extensions of static properties and their relationship to their dynamic counterparts
2. Analysis of the stochastic setting
3. General framework for summarization
4. Clustering (spatiotemporal k-means)
5. Generalized optimal routing
6. Periodic systems

Applications

1. Animal herding behavior
2. General Transit Feed Specification (GTFS)
3. Twitter data
4. Additional satellite data

THE BEST THESIS DEFENSE IS A GOOD THESIS OFFENSE.
In conclusion ...
https://xkcd.com/1403/
(3) Q\&A ©

