
FPO | Dynamic Graphs
Sherrerd Hall 101; May 3, 2023 @ 4:30 PM
Devavrat Vivek Dabke



🙏 Acknowledgements 🫶



Overview

1. Brief mathematical introduction
2. Theoretical observations and conjectures
3. Application Domains

a. Basketball (with ML)
b. Space with NASA



🧮 Math Intro 🔢



A simple graph



A dynamic graph

https://docs.google.com/file/d/1yGAhjVjlrdwDacNZqe1GW9APQ44Wyq80/preview


Definition: Dynamic Graph



Dynamic 
Graphs
are Everywhere

● Commute networks
● Animal interaction networks
● Opinion dynamics
● Cell-cell signaling
● Social networks
● Satellite communication 

networks
● Basketball, sports
● Bird flocking



NYC Metro Area Commute Network
Dabke, Karntikoon, Aluru, Singh, Chazelle. Network-augmented compartmental models to track asymp. disease spread. (pre-print)



Transit Networks (GTFS)
Dabke, Green. Analyzing transit networks with ideal routing machines. (pre-print)



Animal herding networks
Dorabiala, Dabke, et al. Spatiotemporal k-means. (pre-print)

https://docs.google.com/file/d/1i5S9Qj6tU6CeFcLk7vbcLwoei5hJ3pUt/preview


Embryos: spatial and chemical connectivity

https://docs.google.com/file/d/13RGSLvewQpohdtIQU9uP1l54j-_Knbc8/preview


Basketball
Dabke, Chazelle. Extracting semantic information from dynamic graphs of geometric data.
Dabke, Taylor. Play classification in basketball networks. (internal publication; pre-print)

https://docs.google.com/file/d/1iI1xYZfVc9oEJZx7JG-gTiww0lc8bauF/preview


NASA: Satellites

CLASSIFIED



NASA: Satellites
Cleveland, Dabke, et al. Introducing tropical geometric approaches to delay tolerant networking optimization.
Hylton, Dabke, et al. A survey of mathematical structures for lunar networks.

https://docs.google.com/file/d/1JZXMVcGkeCnhLdTgtsqh8MplnWLEknb8/preview
https://docs.google.com/file/d/1nkiz_jcnSdLm9WiljVopnuv0jYHWJ62d/preview


Some Problems



Problem
Local ≠ Global



The alternating cycle: a discrete-time sequence

t = 1, 3, 5, ... t = 2, 4, 6, ...



Dynamical system: move one edge at each time step

t = 1, 3, 5, ... t = 2, 4, 6, ...



Fact: max diameter is number of vertices (if connected)

t = 1, 3, 5, ... t = 2, 4, 6, ...



t = 1



t = 2



t = 3



t = 4



t = 5



Dynamically disconnected



Idea: time-expanded graph

t = 1 t = 2 t = 3 t = 4



Observation: disconnected => dynamically disconnected?

t = 1 t = 2 t = 3 t = 4



This one?

t = 1 t = 2 t = 3 t = 4



Disconnected again

t = 1 t = 2 t = 3 t = 4



Time-expanded fixed cycle
t = 1, 2, 3, 4, ...

t = 1 t = 2 t = 3 t = 4



t = 1



t = 2



t = 3



t = 4



t = 5



Problem
𝛎 = n * t



too many nodes

t = 1 t = 2 t = 3 t = 4



Many Problems Don’t “Just Work”

● Can we relate static and dynamic properties?
● How do we recover classical algorithms?
● Is there an efficient way to do all this?



🤓 Theory 💡



Two Orthogonal Dichotomies
Length

finite vs. infinite

Discretization

discrete-time vs. continuous-time



Three Results

I. Define dynamic analogs of static properties and relate them [2]
II. Graph summarization: make representations more efficient [1]

III. Connect to algebraic topology [1, 2]

1. Cleveland, Dabke, et al. Introducing tropical geometric approaches to delay tolerant networking optimization.
2. Hylton, Dabke, et al. A survey of mathematical structures for lunar networks.



Dynamic 
Connectivity



Journeys are
Dynamic Paths



t = 1



t = 2



t = 3



t = 4



t = 5



Definition: Dynamic Diameter

● discrete-time (infinite or finite)
● defined at each timestep

○ itʼs a sequence, not a number

● max of
○ shortest journey between all vertex pairs



Definition: Dynamically Connected

● Connected if diameter is always finite
● Uniformly connected if bounded



Proposition (We Didn’t Mess Up I)

If at any time a vertex has no outbound edges, the graph is dynamically disconnected.



Proposition (We Didn’t Mess Up II)

For a fixed dynamic sequence: diameter equals that of base graph.



t = 1



t = 2



t = 3



t = 4



t = 5



Question
When does static 
imply dynamic?



Result: Self-Loops are Sufficient

Static connectivity implies dynamic connectivity if self-loops.

Other notes:

● Stronger (but more technical): weak monotonicity is sufficient.
● Uniform bound: number of vertices



t = 1



t = 2



t = 3



t = 4



t = 5



t = 6



t = 7



Recall



t = 1



t = 2



t = 3



t = 4



Dynamic diameter is ∞



Fixed with 
Self-Loops



t = 1



t = 2



t = 3



t = 4



t = 5



t = 6



t = 7



t = 8



Dynamic diameter is finite



Bound Achieved



t = 1



t = 2



t = 3



t = 4



Observation
Finding Conditions 
is Difficult



Idea
Stochastic Case



Observation: Force Edges to Move

● A particle can get pathologically “stuck”
● Require edges to change around

○ Ensure that each possible edge appears infinitely often?



Model: Dynamic Erdős-Rényi

● Fix edge probability p ∈ (0, 1)
● At every time step for every edge, flip a (biased) coin:

○ If heads, put the edge in
○ Otherwise, leave the edge out

● Note: edges across time are i.i.d. Bernoulli



Observation
Independence 
does not work



Proof: Independence => Disconnected

For each vertex at each timestep: probability of no outbound edges is (1 - p)n, which is 
non-zero.



However ...

● Tweak: reflip all coins for a vertex if it has no outbound edges
○ Lose independence (a bit subtle)

● Based on simulations, conjecture: diameter is
○ constant if p constant
○ log n if p is (log n) / n



Observation
Self-loops are 
overpowered



Model: Dynamic Erdős-Rényi with Self-Loops

● Put in all self-loops
● Generate other edges (u, v) where u ≠ v

○ Fix edge probability pu,v ∈ (0, 1)
○ At every time step, flip a (biased) coin:

■ if heads, put in edge
■ otherwise, no edge



Proposition: Almost Surely Connected

1. Observation: every edge occurs infinitely often
2. By weak monotonicity, almost surely connected
3. Once connected, can never disconnect
4. Based on simulations, conjecture: diameter is

a. constant if p constant
b. log n if p is (log n) / n



Remaining Work

1. More rigorous treatment of non-self-loop case
2. Proof of proposed bounds
3. Additional models



Three Results

I. Define dynamic analogs of static properties and relate them
II. Graph summarization: make representations more efficient

III. Connect to algebraic topology



Graph 
Summarization



Idea
𝛎 = n * t is bad
n is okay



Conversion

https://docs.google.com/file/d/1yGAhjVjlrdwDacNZqe1GW9APQ44Wyq80/preview


Strategies: Depends on Context

● Idea: each edge has time-based weight function
● Weight can represent

○ Capacity
○ Traversal time
○ Traversal speed
○ Bandwidth
○ etc.

● Inspired by centrality, take some “summary” of these functions



Shortest Path/Journey Participation

how often an edge appear in shortest paths or journeys



ex 1: Instant Path Summarization

1. Each edge has a (possibly infinite) cost as a function of time
2. Frozen in time, each path has a cost
3. Frozen in time, we can pick optimal paths if

a. they have finite cost AND
b. they have least cost



ex 1: Path Participation Function



ex 1. Weighted Static Graph

1. Started with: graph with time-dependent edge weight cost function
2. Ended with: graph with static edge weights

a. Related to edge centrality measures

3. We can perform further analysis
a. Katz centrality, etc.



ex 2. Traversal-Time Journey Summarization

1. Each edge has a (possibly infinite) traversal time as function of time
a. If you start at time t, you will take w(t) units of time to traverse

2. Compute shortest journeys
3. Compute shortest-path participation for edges



ex 2. Traversal Time

The velocity across an edge

The traversal completion set: at 
what time will we be done?

The traversal time: how long does 
it take to traverse the edge?



ex 2. Path Length



ex 2. Path Length

start at time

s



ex 2. Path Length

tt
s (e)



ex 2. Path Length

start at time
sʼ = s + tts(e)



ex 2. Path Length

tts
ʼ (e)



ex 2. Path Length

The path traversal time: how long 
does it take to traverse a path 
starting at time s?



ex 2. Final Step

1. We can define shortest paths at each time step if
a. they have finite traversal time
b. they have least traversal time

2. Then compute path participation as before



Summarization
Pros

● Do expensive computation upfront
● Compressed representation
● Extract relevant and meaningful information 

for application
● Creates a static graph, which we know more 

about than dynamic ones

Cons

● Inherently lossy
● Potentially expensive to compute
● Very specific to application
● Numerical issues



Extensions

1. Introduce additional summarization methods
2. Create a general (categorical?) framework for:

a. Defining edge functions
b. Summarization methods
c. Analysis of summary graphs



Three Results

I. Define dynamic analogs of static properties and relate them
II. Graph summarization: make representations more efficient

III. Connect to algebraic topology



Algebraic 
Topology



Three Results

I. Define dynamic analogs of static properties and relate them
II. Graph summarization: make representations more efficient

III. Connect to algebraic topology



😎 Applications Abound 🧪



Dynamic Graph Projects

1. Viral spread across connected populations
a. Rumors
b. COVID-19

2. Basketball
a. Using TDA
b. Using ML

3. Space!
a. Contact graph routing
b. Tropical geometry

4. Others: animal clustering, transit, embryos, opinion dynamics



🤖 Machine Learning 🏀



Duke v. UNC (booooo!)
Multi-agent system (invasion sport)



Raw Trajectory Data



Dataset

● (x, y)-coordinates of offense, defense, basketball
● 25 frames per second (40ms per frame)



Model Goals

1. Formation discovery: a semantic understanding of the functional roles of players
2. Compression and dimension reduction: an efficient representation of a game, as 

player trajectory data is large and difficult to interpret
3. Predictive power: a mechanism for predicting trajectories of players
4. Synthetic generation: a tool for creating synthetic, but “realistic,” data



Prior Work

1. Trajectory Prediction: related to predictive power and synthetic generation
2. Role Discovery: related to formation discovery
3. Network Analysis: related to high compression and dimension reduction



Model Pipeline



Step 1: Dynamic Passing Network



Observation
218 Graphs to 
Isomorphism

https://oeis.org/A000273
https://oeis.org/A000273


Step 2: Networks to Labels

1. Compute library of graphs seen in data
2. Assign each a unique label (frequency-based?)
3. Convert networks to labels



Passing Graphy Library



Interlude: Jump Markov



Interlude: Jump Markov

continuous-time jump 
Markov process



Interlude: Jump Markov

Poisson counting process



Interlude: Jump Markov
discrete-time Markov 
chain



Interlude: Jump Markov



Idea: Semantic “Extraction”

1. Take library of passing graphs as tokens
2. Use NLP model to learn as a “language”
3. Good model: Transformer



Transformer Architecture



Experiment

● 40-10 prediction task
● Feed in graph data, along with base position data
● Predict trajectories
● Compare against true trajectories with MSE



66%
reduction in loss against benchmark

(40–10 trajectory prediction task)



🚀 Space 🌕



Satellites



More Satellites



Even More Satellites



Contact Graph Routing

1. Satellites, ground stations, etc. moving in space
a. Data tells us when two will make “contact” with each other
b. Format is a “contact graph”
c. Graph is dynamic and periodic (idealized)

2. Task: route information across network
a. High latency
b. Changing bandwidth + speed
c. Low storage
d. High error rate



Current Approach

Send information in packets and repeat 10 times based on known orbit schedule.



Goal
Can we do 
better?



Defining “Better”

1. Increase bandwidth (worst case is 2kbps)
2. Decrease latency (limited by speed of light)

a. 1.3 seconds to Moon
b. ~25 minutes to Mars
c. 5.5 hours to Pluto

3. Decrease error rate
4. Add features

a. Packet prioritization
b. Broadcasting



Defining “Better”

1. Increase bandwidth (worst case is 2kbps)
2. Decrease latency (limited by speed of light)

a. 1.3 seconds to Moon
b. ~25 minutes to Mars
c. 5.5 hours to Pluto

3. Decrease error rate
4. Add features

a. Packet prioritization
b. Broadcasting



Generalization of Jowsig

1. Start with weighted digraph
2. Perform Dijkstraʼs repeatedly
3. Generate shortest path trees
4. Repeat until we reach fixed point



🔮 Future Work 🔬



Theory

1. Further extensions of static properties and their relationship to their dynamic 
counterparts

2. Analysis of the stochastic setting
3. General framework for summarization
4. Clustering (spatiotemporal k-means)
5. Generalized optimal routing
6. Periodic systems



Applications

1. Animal herding behavior
2. General Transit Feed Specification (GTFS)
3. Twitter data
4. Additional satellite data



In conclusion ...
https://xkcd.com/1403/

https://xkcd.com/1403


🙋 Q&A 🙃


