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A Novel Method for Vertex Clustering in Dynamic Networks

Introduction
We introduce spatiotemporal graph k-means (STGkM), a novel method for 
clustering vertices in a dynamic network. Drawing inspiration from classical k-
means, we develop a technique to identify both short-term and long-lived 
communities that respect the overall dynamics of a graph.

Our method combines several desirable properties:
 1. Temporal smoothness
 2. Only one required parameter: k, the number of clusters
     3. Multiscale analysis at the most granular and coarsest levels

Spatiotemporal Graph k-means
Setup Given a dynamic graph we pre-compute the shortest journey δt(u, v) 
from vertex u to v starting at time t for all pairs of vertices and all time. We 
require k and optionally take two tuning parameters: λ, γ.

Phase 1 Solve optimization unified over space and time:

                                                                
                  

Phase 2 We define a metric between vertices as the Hamming distance of their 
respective assignment histories W. With this metric, we perform agglomerative 
clustering to partition vertices into long-lived spatiotemporal clusters.

Theoretical Results
Theorem 1 Given a holding, non-stranding dynamic graph with k connected 
components, the partition induced by the optimal solution is exactly the 
connected components with sufficient time.

In this setting, vertices in different clusters eventually have
infinite distance, so we can separate them.

Lemma 1 For two vertices u, v in distinct connected components, there exists 
some time step t0 such that the distance between them is infinite.

If not true, these vertices would be connected by definition.

Lemma 2 In a self-connected dynamic network, connectivity* is an equivalence 
relation; the connected components are the respective equivalence classes.

Lemma 3 For two vertices in distinct connected components in a non-
stranding, holding dynamic network, there exists a time step such that the 
distance between them is infinite after that timestep.

This result extends Lemma 1 to guarantee that vertices never become 
connected after becoming disconnected. It eliminates pathological cases, 
especially in very long-ranged networks.
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Choosing k
STGkM is an unsupervised method but requires a known number of clusters. 
We use a technique analogous to the Elbow Method to automatically select an 
optimal value of k, which further obviates the need for manual intervention. 
We search for the global minimum objective value across sufficiently small k.

Experimental Results
Synthetic Data We generate three cliques and then randomly perturb the 
graph. After running STGkM, we can identify the original cliques as they evolve 
over time. This example demonstrates the operation of this algorithm.

Voting Data We form a graph of roll call votes from the United States House of 
Representatives. Each representative is a node, and nodes are connected if and 
only if they vote the same on a given issue. Each vote is a time step. We obtain 
three long-lived clusters: Republicans, Democrats, and a small band of 
“outlying” Democrats. We choose k using our method described above.

Main Objectives
We introduce spatiotemporal graph k-means (STGkM), a novel method for 
clustering vertices in a dynamic network. Drawing inspiration from classical k-
means, we develop a technique to identify both short-term and long-lived 
communities that respect the overall dynamics of a graph.

Our method combines several desirable properties:
 1. Temporal smoothness
 2. Only one required parameter: k, the number of clusters
     3. Multiscale analysis at the most granular and coarsest levels
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Phase 1

Given a fixed value of k, the first phase of STGkM selects a set of k vertices to
serve as cluster centers and assigns each vertex to a cluster at every time step.
Vertices have the flexibility to switch cluster membership at every time step, but
cluster centers are constrained by drift parameters � and �.

Natural Objective The natural extension of k-means would be to optimize
the objective function in Expression 1:

min
c2C,W2W

X

t2T

X

u2V

X

j2[k]

W
t
u,j · �̃t(u, ctj) (1)

where we minimize over cluster centers C and assignment tensors W. Formally,
C is the set of all sequences of length |T| where each element is an ordered subset
of V with k elements; W , {0, 1}|T|⇥|V |⇥k such that

P
j2[k] W

t
u,j � 1. Note that

we allow vertices to belong to multiple clusters simultaneously, and each vertex
is assigned to at least one cluster at every time step.

Objective with Regularization Optimizing Expression 1 is NP-hard5, so we
instead iteratively optimize a modified objective function that restricts the search
space. We begin by choosing initial cluster centers c

0 to be the nodes that are
most closely connected to all others at t0. When there are ties, we sample ran-
domly. At each time t henceforth, we assume that we have chosen optimal cluster
centers cs for all s < t, and we minimize Expression 2.

min
c,W

X

u2V

X

j2[k]

W
t
u,j · �t(u, ctj)

such that �t�q(ct�1
j , c

t
j)  �, where 1  q  � and 1  j  k

(2)

The constraint in Expression 2 imposes that the center of a given cluster can
only switch from vertex u to vertex v if the distance between them is no more
than � for the previous � time steps. This regularization serves two purposes:
first, it associates dynamic clusters between time steps; second, it restricts the
search space for cluster centers6. As we decrease � or increase �, we decrease the
number of potential centers at time t and enforce stricter cluster consistency;
see Figure 1 for an example.

In practice, we update the center of a cluster only if the objective is improved.
When we encounter the case where selecting new cluster centers is infeasible, we
update clusters individually instead of jointly. Our algorithm terminates until
either the clusters stabilize or we reach a maximum number of iterations.

5 To see why, observe that k-medoids is NP-hard [20].
6 In the worst case, e.g. when the graph is complete at every time step, optimizing
this objective is still NP-hard, but in practice, it makes STGkM tractable.
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All subsets of V of length k

Figure 1. At time t, c0t is chosen based on c0t-1 . The drift time window 𝜸	determines for how 
many previous time steps centers must be within maximum drift 𝝀 of one another. The 
objective function is evaluated for all potential cluster centers; the center that minimizes 
the objective is chosen. 

Objective Constraint

Figure 2. Objective function value versus number of clusters on a synthetic dataset.

Figure 3. Three snapshots of a dynamic graph and the dynamic clustering as predicted by 
STGkM. Cluster centroids are identified by enlarged nodes.

Figure 4. Similarity matrices of the short term clustering similarity between nodes in the 
Roll Call dataset. Rows and columns of the matrices are organized by detected long-term 
community membership.
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