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Introduction Main Objectives

We introduce spatiotemporal graph k-means (STGkM), a novel method for
clustering vertices in a dynamic network. Drawing inspiration from classical k-
means, we develop a technique to identify both short-term and long-lived
communities that respect the overall dynamics of a graph.
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Our method combines several desirable properties:
1. Temporal smoothness
2. Only one required parameter: k, the number of clusters
3. Multiscale analysis at the most granular and coarsest levels
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Setup Given a dynamic graph we pre-compute the shortest journey 6%(u, v) STGkM is an unsupervised method but requires a known number of clusters.

from vertex u to v starting at time t for all pairs of vertices and all time. We We use a technique analogous to the Elbow Method to automatically select an

require k and optionally take two tuning parameters: A, y. optimal value of k, which further obviates the need for manual intervention.
We search for the global minimum objective value across sufficiently small k.

Phase 1 Solve optimization unified over space and time:

. ~ ~ t st 4 t—q/ t—1 ¢ Objective Value vs. Number of Clusters
ueV jelk] W E {0, 1}TTXIVT<E l<qg=<~n 3
-
All subsets of V of length k _8 70000
O
Objective Constraint 5
L 60000 -
)
2
Cluster Center Selection Process at Time t _§ 50000
®)
t-1 t ° .
10
@ -current cluster center Number of Clusters k
@ -potential cluster center Figure 2. Objective function value versus number of clusters on a synthetic dataset.
A=2
y=2
®
Experimental Results
‘ Synthetic Data We generate three cliques and then randomly perturb the
PP graph. After running STGkM, we can identify the original cliques as they evolve
ol2[1]3 [o]1[1]2 2| | To[2[1]3 [o1]q]2 over time. This example demonstrates the operation of this algorithm.
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Phase 2 We define a metric between vertices as the Hamming distance of their
respective assignment histories W. With this metric, we perform agglomerative

clustering to partition vertices into long-lived spatiotemporal clusters. Figure 3. Three snapshots of a dynamic graph and the dynamic clustering as predicted by
STGkM. Cluster centroids are identified by enlarged nodes.

. Voting Data We form a graph of roll call votes from the United States House of
Theoretical Results Representatives. Each representative is a node, and nodes are connected if and
only if they vote the same on a given issue. Each vote is a time step. We obtain
three long-lived clusters: Republicans, Democrats, and a small band of
“outlying” Democrats. We choose k using our method described above.

Theorem 1 Given a holding, non-stranding dynamic graph with k connected
components, the partition induced by the optimal solution is exactly the

connected components with sufficient time.

Roll Call Data
In this setting, vertices in different clusters eventually have Short Term Cluster Similarity Scores k=3 0

infinite distance, so we can separate them.
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Lemma 1 For two vertices u, v in distinct connected components, there exists
some time step t, such that the distance between them is infinite.

Republicans

If not true, these vertices would be connected by definition.

Lemma 2 In a self-connected dynamic network, connectivity™* is an equivalence
relation; the connected components are the respective equivalence classes.

Lemma 3 For two vertices in distinct connected components in a non-
stranding, holding dynamic network, there exists a time step such that the
distance between them is infinite after that timestep.

Democrats

Outlying Democrats
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This result extends Lemma 1 to guarantee that vertices never become
connected after becoming disconnected. It eliminates pathological cases,
especially in very long-ranged networks.

Figure 4. Similarity matrices of the short term clustering similarity between nodes in the
Roll Call dataset. Rows and columns of the matrices are organized by detected long-term
community membership.
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