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Abstract— To sustain the current and increasing accessibility
of space, a scalable communications infrastructure (i.e. the
Solar System Internet, SSI) is necessary. The goal of this
paper is to begin the discovery of the fundamental underlying
mathematical structure of space networks to help the research
community harness these structures for algorithm development
and optimization. To ensure the applicability of the research,
the approaches are considered through the lens of simulated
scenarios inspired by the Artemis Back-to-the-Moon mission set
for 2024.

We note that any approach to an SSI must fit under the umbrella
of Delay Tolerant Networking (DTN), due to celestial mobility,
high link latencies, high variance in link latencies, disconnec-
tions, lack of end-to-end paths, and so on. These difficulties are
exacerbated by the fact that the underlying structure of a space
network is a time-evolving network and may experience multiple
discontinuities in its topology.

In this paper we propose several novel approaches to a mathe-
matical foundation for Delay Tolerant Networking Theory that
fall outside the traditional scope of temporal network theory.
These techniques include methods from Topological Data Anal-
ysis, Dynamic Graph Analysis, Applied Algebraic Geometry,
Probability Theory, and Game Theory. Some of these methods
include tools adapted to the study of dynamic metric spaces,
such as zigzag persistent homology and their higher parameter
analogs. We find that several of these methods target desired
engineering outcomes such as discovery and automatic sub-
netting. While each approach is theoretical, they are also al-
gorithmic in nature and offer immediate practical applications.
The paper concludes with comparisons of the various methods
along with suggestions for future work.

1. INTRODUCTION
NASA is adopting Delay Tolerant Networking (DTN) as
a standardized approach to space networking in order to
address several challenges. These include physical realities,
such as mobility and propagation delay. They also include
network difficulties, such as high time-variance and a po-
tential lack of end-to-end connectivity. Also considered are
process challenges, such as scheduling; NASA notes that
manual scheduling approaches can take up to five days for
a given transmission [1]. While the physics of satellites
separated by interplanetary distances cannot be overcome, the
resulting system can be studied and turned into a functioning
disconnected network.

DTN glues together otherwise disparate network components
in an overlay network. This allows the network to carry bun-
dles, the primary data unit in a DTN. For example, this could
include point-to-point radios, but also existing Transmission

Control Protocol (TCP) networks – such as ground stations
connected by the Internet. DTN accomplishes this by means
of store, carry, and forward action – data are stored upon
receipt, carried until a meaningful contact is established, and
then forwarded. This notion of meaningful can be elusive, as
traditional networking theory stops short of the topologically-
complex (i.e., “many” connected components) and time-
varying graphs inherent in space networks. This paper is
part of a series of papers that explore the mathematical
foundations of DTNs. This allows better algorithms (such
as routing and policy) to be implemented to act on the DTN
protocol, for example so that the DTN protocol might know
which links are meaningful. See [2][3][4].

After explaining how and where intuition and test cases come
from, this paper considers temporal graph theory, an alter-
native approach to the classical contact graph routing (CGR)
pathfinding algorithm. This paper also considers methods to
handle the difficulties of dynamic graphs, some applications
of computational topology, algebraic modeling of DTNs, and
applications of game theory to traffic flows. It is the authors’
hope that these new tools and our observations about them
enable next steps in DTN research to finally realize a Solar
System Internet. Some project ideas are listed in the future
work section.

2. NETWORK SIMULATION INFORMATION

Figure 1. Sample Space Network

Visualization and modeling are crucial to our understanding
of delay tolerant networks. Orbital analysis software serves20

22
 IE

EE
 A

er
os

pa
ce

 C
on

fe
re

nc
e 

(A
ER

O
) |

 9
78

-1
-6

65
4-

37
60

-8
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
AE

RO
53

06
5.

20
22

.9
84

33
05

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2024 at 19:04:28 UTC from IEEE Xplore.  Restrictions apply. 



as the foundation on which to apply the mathematical tools
discussed here. Throughout this paper, these simulations
function to visualize the complexities of a delay tolerant
network though the lens of lunar networks; see the example
network of Figure 1.

Creating autonomous routing algorithms requires a complex
understanding of the assumptions and nuances of a delay
tolerant network. Networks in space depend heavily on time,
propogation delay, intermittent connections, and hardware
limitations. As such, the heterogeneity of a space network
only amplifies the need for accurate and accessible visualiza-
tion techniques.

To accomplish orbital visualization and analysis, the Satellite
Orbital Analysis Program (SOAP)1 was used. SOAP allows
users to create and simulate space scenarios including surface
and orbital assets, among others, over a specified time frame.

We developed a lunar orbital simulation built from NASA
missions to begin modeling a basis for lunar networking. The
objects are split up into ground stations on Earth and the
Moon, along with future and current satellites. The two Earth
ground stations were placed at the Glenn Research Center’s
main campus in Cleveland, Ohio and the Kennedy Space
Center in Merritt Island, Florida. There were four ground
stations placed on the Moon: one centered on each pole and
the other two centered on the far and near sides relative to
Earth. This simulation contained seven satellites: the Lunar
Reconnaissance Orbiter (LRO) which launched in 2009; the
Gateway station, which is expected to be fully assembled in
2024; and the five Time History of Events and Macroscale
Interactions during Substorms (THEMIS) satellites launched
in 2007 [6].

Notably, the THEMIS satellites A-E started out orbiting
Earth. Then at the start of the Acceleration, Reconnection,
Turbulence and Electrodynamics of the Moon’s Interaction
with the Sun (ARTEMIS) mission, THEMIS B and THEMIS
C were repurposed and redirected into lunar orbit in 2010 as
ARTEMIS P1 and ARTEMIS P2 respectively [7].

In making the model, each ground station was set by latitude
and longitude coordinates. Both NASA centers’ coordinates
were taken directly from an internet search, and the lunar
ground stations’ coordinates were chosen to lie directly in the
middle of each pole latitudinally and the middle of the equa-
tor on both sides (near and far) longitudinally. Each Earth-
orbiting THEMIS satellite (A, D, E) was entered into the
model through a two-line element (TLE) from Celestrak [8].

The ARTEMIS P1 and P2 satellites were manually con-
structed to match data from the Planetary Data System (PDS)
generated by the Jet Propulsion Laboratory. Both approxima-
tions were based on their respective definitive trajectory.bsp
file with a configuration set at 2012/11/27 at 00:00:00. The
LRO orbital parameters were pulled from the most recent
data entry into NASA’s catalog denoting the parameters cor-
responding to the first 50,000 orbits where parameter inputs
were specified inside the spreadsheet [9].

Lastly, the Lunar Gateway Near-Rectilinear Halo Orbit was
imported through the PDS system from NASA Jet Propulsion
Laboratory as a .bsp file [10].

Figure 1 shows a visualization of the simulation from SOAP

1SOAP is developed by the Aerospace Corporation [5].

from a lunar viewpoint. The simulation was color coded
into groups of satellites and ground stations. The ARTEMIS
satellites are in yellow, THEMIS in orange, GATEWAY in
purple, Earth ground stations in pink, lunar ground stations in
blue, and the Lunar Reconnaissance Orbiter (LRO) in red.

3. TEMPORAL GRAPH THEORY
Graphs are one of the fundamental mathematical structures
used to study computer networks. A finite graph G = (V,E)
consists of a finite vertex set V and a finite edge set E,
consisting of pairs of vertices, i.e. E ⊆ V ×V . If we identify
(i, j) = (j, i), then we say a graph is a undirected or simply a
“graph;” if the ordering of the vertices matters in a pair, then
we say that we have a directed graph or digraph. This abstract
structure allows us to model relationships between objects,
such as connectivity. In the setting of computer networks, an
edge might be a link between two devices.

In this setting, it is natural to study the importance of a
device to the network overall. An example of something
that measures this importance is centrality which ranks nodes
based on their importance to connecting the graph. It is also
natural to study how one optimizes in a network from an
individual, greedy perspective versus from the perspective of
the network overall.

Graphs can also be “decorated” by coloring their vertices,
adding directions to the edges, or weights indicating the
capacity or cost of a connection, for example. Once graphs
are decorated, algorithms and analysis can be applied to solve
several problems, such as single source shortest path, max
flow, or minimum spanning tree, to name a few. There are
several well-established tools for solving these problems.

One of the implicit assumptions in the construction of many
terrestrial networks is that there exists a “backbone” of
the system that will largely go unchanged as time passes.
Another assumption is that communications can be passed
near instantaneously. The way graphs are used to model
these networks for engineering purposes often rely on these
assumptions.

Both of these assumptions quickly fall apart in the context of
space networks as the assets are subject to orbital mechanics
and may lose line of sight or have a nontrivial one-way light
time. Thus, when designing a networking system in this
setting, one needs to consider more general tools. However,
many of the most powerful theorems and algorithms that
are useful for networking problems such as max-flow min-
cut or Dijkstra’s algorithm are built to work with a specific
collection of common graph decorations such as directed
edges and edge weights. This begs the question: how can one
bridge the gap between our system assumptions and the tools
which have been successful in past network engineering?

One approach taken by the developers of Contact Graph
Routing (CGR) is to construct a graph that represents aspects
of our time-evolving network in a way that fits the assump-
tions of a desired mathematical tool (in this case Dijkstra’s
algorithm). This approach can be fruitful but also limited as
these representations are not the most natural way to think
about time-varying systems. Thus, robust analysis of these
networks is limited2. In light of this, we consider a different
collection of graph decorations which more naturally model

2The reader may refer to a mathematical analysis of CGR [11].
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3the time-varying nature of our system.

The first tool we consider is a time-varying digraph. We
define a time-varying digraph as a triple G = (V,E, T ),
where V is a finite vertex set, E ⊆ V × V is a set of directed
edges, and T = {Te | e ∈ E}, where each Te is a set
labeling the edge e. In a continuous time-varying digraph,
each Te ∈ T is a set of intervals associated to the edge e ∈ E.
For a discrete time-varying digraph Te ⊆ N. In both cases,
Te can be thought of as telling us when each connection is
available: in the discrete case, it is available at a discreet time
step ai ∈ Te, and in the continuous case it is available for
each interval Ii ∈ Te. Note that we allow loops, that is, edges
that connect a vertex to itself. Discrete time-varying digraphs,
sometimes referred to as time-evolving or temporal digraphs,
have been a fruitful subject of study in computer science
literature [12][13][14]. However, the authors have found very
little literature concerning continuous time-varying digraphs
as a subject of study.

Discrete time-varying digraphs

Discrete time-varying digraphs have a discrete set decorating
each edge which indicates which times that edge is available.
We first consider a way of describing how a time-varying
digraph changes over its discrete time steps.

Definition 3.1. Let G = (V,E, T ) be a discrete time-
varying digraph with times given by Te for each edge e.
Let Λ =

⋃
e∈E

Te be ordered so that Λ = {λ1, . . . , λn} and

λi−1 < λi. Define the static expansion to be the graph H
with vertex set VH and edge set EH such that:

• If u ∈ V , then ui ∈ VH for each i ∈ Λ ∪ {λ1 − 1}.

• If e = (u, v) ∈ E and λi ∈ Te, then (uλi−1
, vλi

) ∈ EH .

An advantage of this representation is that it allows us to
think of the vertices of this expanded digraph as images of
our original vertices in time [12].

Dynamic Connectivity

Another way to expand a time-varying digraph into a larger
structure is to construct a sequence of graphs. The idea is
to represent how the network appears at any interval through
discrete steps.

Definition 3.2. Let G = (V,E, T ) be a discrete time-
varying digraph with times given by Te for each edge e.
Let Λ =

⋃
e∈E

Te be ordered so that Λ = {λ1, . . . , λn} and

λi−1 < λi. Define the digraph sequence to be the sequence
of graphs G = {Gλ}λ∈Λ = {(V,Eλ)}λ∈Λ where the edge
sets are given by Eλ = {e ∈ E | λ ∈ Te}.

Note that each digraph in the sequence has the same (identi-
fiable) vertices, but the topology of the digraph is changing.
We could augment this definition by including edge weights,
node colorings, etc. However, we do not allow for a change in
the number or identity of vertices. The length of this sequence
could be finite or infinite depending on the context.

In a digraph G = (V,E), we say a path P is a sequence of
vertices, i.e. P = (vi0 , vi1 , . . . , vik), such that for 1 ≤ j ≤ k,
(vij−1

, vij ) ∈ E. In other words, a path is a sequence
of vertices where each consecutive pair of vertices in the

sequence forms an edge in the digraph. P has length k. For
a sequence of digraphs, we can define an s-journey Js as a
sequence of vertices, i.e. Js = (vi0 , vi1 , . . . , vik), such that
for 1 ≤ j ≤ k, (vij−1 , vij ) ∈ Es+j−1.

Given a digraph G, let P be the set of all finite paths and
P(i, j) be the set of all finite paths where the first vertex is vi
and the last vertex is vj . We define the shortest path length
SP (i, j) as

SP (i, j) = min
P∈P(i,j)

length(P ).

Therefore, we can now define the diameter of G as

diameter(G) = max
i,j∈|V |

SP (i, j).

Notably, SP (i, j) can be∞, so the diameter can be, too - in
particular, this happens when no path exists.

From here, we can define s-diameter, which defines a diame-
ter given a particular timestep s. Given a digraph sequence G,
let J s be the set of all finite s-journeys and J s(i, j) be the set
of all finite s-journeys where the first vertex is vi and the last
vertex is vj . We define the shortest journey length SJs(i, j)
as

SJs(i, j) = min
Js∈J s(i,j)

length(Js)

Therefore, we can now define the s-diameter of G as

diameters(G) = max
i,j∈|V |

SJs(i, j)

Notably, SJs(i, j) can be∞, so the s-diameter can be, too.

We can thus define the following notions of connectivity. A
graph is (strongly) connected if it has finite diameter. In
graph theory for directed graphs, it is common to use strongly
connected if the graph has finite diameter, but we will simply
say connected.

A digraph sequence is:

• δ-disconnected if the s-diameter is∞ for all s;
• δ-weakly connected if the s-diameter is finite for some s;
• δ-connected if the s-diameter is finite for all s;
• and δ-uniformly connected if there exists a finite C such
that the s-diameter is at most C for all s.

Furthermore, we say a digraph is non-stranding if for all
vertices there exists an outbound edge. We say a digraph is
holding if for all vertices there exists an edge to itself. We
say a digraph sequence is non-stranding if all digraphs in the
sequence are non-stranding. And we say a digraph sequence
is holding if all digraphs in the sequence are holding. Finally,
we say a digraph sequence is fixed if all digraphs in the
sequence are the same, i.e. G = {Gk} and Gk = G for all k.
We say that G is the base graph of a fixed sequence.

First, note that we have harmonized the static and dynamic
graph properties.

Proposition 3.3 (Harmonization of Fixed Sequences). A
fixed digraph sequence G is connected if and only if the base
graph G is connected. Moreover, such a connected graph
sequence is δ-uniformly connected, and its uniform bound is
the diameter d of the base graph. This bound is in fact tight,
i.e. the s-diameter is d for all s.
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Proof. At a high-level, for a fixed digraph sequence, journeys
and paths are the same. Thus, all of the definitions for
shortest path and shortest journey coincide. We proceed more
formally.

First, we show that all s-journeys for all s in the digraph
sequence are also paths on the base graph. If a sequence of
vertices (v0, . . . , vk) is an s0-journey for arbitrary timestep
s0, then 1 ≤ j ≤ k, (vij−1 , vij ) ∈ Es0+j−1 by definition of
an s-journey. However, since this is a fixed digraph sequence,
we can rewrite this as (vij−1

, vij ) ∈ Eb. This is exactly the
definition of a path on base graphG. Symmetrically, note that
every path on G is a valid s-journey for every timestep s.

Now, suppose that G is connected: this implies that for every
timestep s, there exists an s-journey between every pair of
vertices. Each s-journey is also a path on G, which means
that there is a path from each pair of vertices in G. G is thus
connected.

Suppose that G is connected. This implies that there is a path
between every pair of vertices. For each timestep s, we know
that a path is a valid s-journey. Therefore, there must be an
s-journey between every pair of vertices for every s.

Finally, let us inspect the s-diameter. Suppose there is a
timestep s0 such that the s0-diameter is strictly less than d,
the diameter of G. Then, there exists an s0-journey of length
less than d between each pair of vertices. But, since each s0-
journey is a path, then there must exist a path between each
pair of vertices of length less than d, which would imply that
the diameter of G is less than d, which is a contradiction.

In the other direction, note that if the diameter of G is d, then
there exists a path of length at most d between each pair of
vertices. Since every path is an s-journey for every timestep s,
then there exists an s-journey of length at most d from each
pair of vertices for every s. Therefore, there is a uniform
bound d on the s-diameter.

Next, we note that holding is an important property that links
static and dynamic notions of connectivity.

Proposition 3.4 (Uniform Connectivity of Connected Hold-
ing Sequences). A holding digraph sequence G where each
digraph in the sequence is connected is δ-uniformly con-
nected. In particular, the number of vertices n is a uniform
bound.

Proof. Fix a digraph sequence G. We select an arbitrary
starting time t0 and source vertex vs We will show that there
exists an t0-journey between vs and every other vertex in our
finite vertex set V and each journey has length at most n
where n = |V |.

To accomplish this, we will show three properties of some-
thing called “reachability sets” of the vertex: weak mono-
tonicity, complementary inclusion, and then strong mono-
tonicity. To start, note that for a finite journey of length i,
we can write the journey as

J = (vt0 , vt1 , . . . , vti)

We say this journey “reaches” or “ends at” vertex vti and
“starts at” vertex vt0 . A reachability set is a set Ui ⊆ V of

vertices that can be reached in an t0-journey of exactly length
i such that the journey starts at vs. We let U0 = {vs}.

We will first show that for a holding digraph sequence, the
sequence of Ui satisfy weak monotonicity, in that

U0 ⊆ U1 ⊆ · · ·Un ⊆ · · ·

Note that with a holding digraph sequence, U1 is non-empty,
in that it at least includes vs. Therefore, suppose that vertex
vu ∈ Uk for some k. Then, vu ∈ Uk+1 since (vu, vu) ∈ Ek+s
by the holding property. In other words, we can extend a
length k journey that reaches vu to a length k + 1 journey by
appending vu.

Next, we show that for any digraph sequence of connected
digraphs, we have complementary inclusion. In other words,
if V − Uk is non-empty, then there exists some vertex vc ∈
Uk+1 such that vc ∈ V − Uk. To show this, we simply
leverage the definition of connected static graphs: suppose
V − Uk is non-empty. For some vertex vc−1 ∈ Uk (which
in a holding digraph, must be non-empty), there must be an
edge in Ek to some vertex vc ∈ V −Uk; otherwise the graph
would not be connected.

Finally, we combine these properties to get strong mono-
tonicity: either Uk ⊂ Uk+1 or Uk = V . Moreover, if
Uk ⊂ Uk+1, then |Uk| + 1 ≤ |Uk+1|. In other words, the
chain of reachability sets must increase in size by at least 1.
Thus, we can conclude that Un−1 = V .

Finally, we provide a simple result that shows that the dy-
namic diameter must change incrementally.

Proposition 3.5 (Non-Stranding Bound on s-diameter). A
non-stranding digraph sequence G with finite s-diameter has
finite t-diameter for all t ≤ s. Moreover, if the s-diameter
is some finite value c, then the (s − 1)-diameter is at most
c + 1. Finally, note that if the s-diameter is infinite, then the
t-diameter is infinite for all t ≥ s.

Proof. Proof left to an interested reader.

4. DIRECTED MULTIGRAPHS
Contact Graph Routing (CGR) is an approach to routing that
has been proposed for use in DTN, specifically for networks
in space. In this section, we propose a model of time-evolving
networks as an alternative to the one currently used in CGR.
This model will allow for an improvement to the pathfinding
algorithm; we will outline the ideas here and leave details
to future work [15]. We begin by introducing the necessary
terms from CGR.

Background on Contact Graph Routing

The fundamental idea behind CGR is a particular type of
graph called a contact graph that is used to describe a time-
evolving network over a period of time. A version of Dijk-
stra’s algorithm [16], [17] can be used to find paths through
this graph, which correspond to routes through the network.
CGR encompasses more than this technique for finding routes
through a network; in fact, it establishes a broader strategy for
managing lists of routes, selecting a route for given data, and
queuing, working within the framework of DTN. However,
we will limit our focus to the pathfinding portion of CGR.
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5Here we introduce the main objects of CGR, following [11].
Given objectsA andB in our time-evolving network, we will
record the intervals of time during which these objects can
communicate and will call these intervals of time contacts. A
contact fromA toB will be written as Ct0,t1A,B , where t0 and t1
are the start and end times of the contact. We will refer to A
and B as the source and destination of the contact, written
for an arbitrary contact C as C.src and C.dst. Similarly,
we will write C.start and C.end for the start and end times.
In practice, additional information will need to be stored for
each contact, including data rate and one-way light time, both
averaged over the duration of the contact. To describe our
network over a fixed period of time, we will assume we have
a record of all contacts that occur: this set of contacts will be
called a contact plan.

A contact graph is a graph that summarizes a contact plan,
hence summarizing a time-evolving network. In a contact
graph, the contacts of a given contact plan are the vertices
— note that this is in sharp contrast with the usual graph-
theoretic models of networks, in which the communicating
objects are the vertices. An edge between two contacts then
represents a period during which data can be stored in an
object between being transmitted during the contacts. That
is, we place an edge from Ct0,t1A,B to Ct2,t3D,E when B = D
and t3 > t0. This produces a graph that contains all the
information of the contact plan, in which paths are sequences
of contacts along which data could be sent. This allows us to
route data through the time-evolving network represented by
the contact graph.

In practice, a contact graph will be constructed over the
course of a routing algorithm, and a slightly different one will
be constructed based on the source S and destination D of
the desired route. We will add in a “root contact” Ctstart,∞

S,S ,
available any time after tstart, the starting time of the route,
and with edges from it to all contacts with source S and
ending time after tstart. Similarly, we will add a “terminal
contact” CD,D, with edges from all contacts with destination
D to this contact. These are artificial contacts that act as
the starting and ending vertices of a routing algorithm; they
are necessary because other choices of starting and ending
vertices would assume we know the first and last contacts
along which data should be sent. Furthermore, because of the
way the graph is constructed during the routing algorithm, we
may leave out any contacts that cannot be reached by a path
from Ctstart,∞

S,S , possibly simplifying the graph.

CGR uses a version of Dijkstra’s algorithm called the Contact
Graph Dijkstra Search [11] to find paths in the contact graph
from the root contact to the terminal contact, hence finding
a route in a time-evolving network. Rather than optimize for
path length, as in the classic version of Dijkstra’s algorithm,
the CGR algorithm instead optimizes for arrival time. That
is, an arrival time is recorded for each contact (this is the
earliest time the first byte of data can arrive to the contact’s
destination), and these arrival times are updated over the
course of the algorithm. These updates take into account
when each contact is available and their one-way light times.
The basic principle of Dijkstra’s algorithm applies, since
arrival times cannot decrease along a path. This allows the
algorithm to find the path with the earliest arrival time to the
destination.

A Multigraph Model for CGR

The approach taken by CGR, as described above, is to model
a time-evolving network as a static graph-theoretic structure,
namely a contact graph. This provides a data structure for
use in a routing algorithm. We propose an alternate model of
a time-evolving network: a directed multigraph with labeled
edges. A modified version of Dijkstra’s algorithm on these
multigraphs will generally perform better than the previously
described version of Dijkstra’s algorithm on contact graphs.

Mathematically, directed multigraphs can be described as
follows.

Definition 4.1. A directed multigraph is a set V of vertices
and a set E of edges, along with source and target functions
s, t : E → V . We will consider directed multigraphs without
loops: that is, we will assume s(e) 6= t(e) for each edge e.

The source and target functions specify the direction of each
edge; we will imagine information being sent along an edge
e from the source s(e) to the target t(e) and draw edges as
arrows. Already, we can see that an edge in a multigraph
closely resembles our description of a contact. We can model
a time-evolving network with a directed multigraph by letting
each contact with source A and destination B be an edge
from A to B. The notation from CGR of C.src and C.dst
replace the source and target functions s and t above. Thus, a
directed multigraph model of time-evolving network consists
of a set of vertices and a set of contacts that form the edges
of the graph; a contact Ct0,t1A,B is an edge from A to B. The
start and end times of a contact can be thought of as labels
on an edge, as can the other information associated to each
contact, including one-way light time and data rate [11].
These labeled, directed multigraphs provide a natural way to
present the data of a contact plan, and like contact graphs,
they describe a time-evolving network by a static, graph-
theoretic structure.

An Alternate Pathfinding Algorithm for CGR

Just as the original Contact Graph Dijkstra Search can be
succinctly described as “Dijkstra’s on a contact graph”, the
alternate algorithm proposed here can be described as a mod-
ified version of Dijkstra’s algorithm on the multigraphs de-
scribed above. Dijkstra’s algorithm can be adapted to run on a
multigraph by simply exploring through each edge connected
to the current vertex. In the simple case of minimizing path
length in a weighted graph, the algorithm is not particularly
interesting, since among the edges between a pair of vertices,
the one with minimal weight will always be used. However,
in our setting where edges are contacts, not all contacts are
available at all times. Like in the Contact Graph Dijkstra
Search, we will optimize for arrival time, which means that
the arrival time to the current vertex is always known and can
be used to determine which contacts exiting the current vertex
are available.

The new algorithm is given in pseudocode below. For now,
we will illustrate the algorithm, along with intuition for why
it should perform better than the original Contact Graph
Dijkstra Search, with a simple example. Figure 2 shows a
contact graph and a multigraph representing the same time-
evolving network, with three vertices A, B, and D. We will
consider the problem of finding the path fromA toD, starting
at time 0, with earliest arrival time. The contact graph has
been given the appropriate root and terminal vertices for this
problem. We sketch the process of a Dijkstra search through
both graphs, assuming each contact has a one-way light time
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of 0 for simplicity.

Figure 2. A contact graph (top) and the corresponding
multigraph (bottom). The contact graph has root and

terminal contacts in order to route from A to D starting at
time 0.

For the contact graph, we begin with C0,∞
A,A as the current

contact with arrival time 0. We explore contacts C0,1
A,B and

C2,3
A,B , assigning them arrival times of 0 and 2 respectively,

and mark C0,∞
A,A as visited. Next, C0,1

A,B becomes the current
contact as it has arrival time earlier than C2,3

A,B . We explore
C4,5
B,D and C6,7

B,D, assigning them arrival times of 4 and 6, and
mark C0,1

A,B as visited. At this point C2,3
A,B has the earliest

arrival time of the unvisited contacts, so it becomes the cur-
rent contact. We examine C4,5

B,D and C6,7
B,D, finding that their

arrival times will not be improved by reaching them through
C2,3
A,B , and mark C2,3

A,B as visited. Next, C4,5
B,D becomes the

current contact, finds a route to CD,D with an arrival time of
4, and is marked as visited. Since the arrival time to CD,D
is better than the arrival time of the other unvisited contact
C6,7
B,D, the algorithm terminates, and the sequence of contacts

that produced the best path is C0,1
A,B , C

4,5
B,D.

For the multigraph, we begin withA as the current vertex with
arrival time 0. We explore through contacts C0,1

A,B and C2,3
A,B ,

as both of these are available after time 0. We find that C0,1
A,B

produces an earlier arrival time, assign B an arrival time of 0,
and mark A as visited. Next B becomes the current vertex,
and we explore through contacts C4,5

B,D and C6,7
B,D, as both are

available after time 0. We find that C4,5
B,D produces an earlier

arrival time, assign D an arrival time of 4, and mark B as
visited. At this point, the destinationD has the earliest arrival
time of any unvisited vertex (it is the only unvisited vertex),
so the algorithm terminates. The result agrees with that for
the contact graph: the sequence of contacts that produced the
best path is C0,1

A,B , C
4,5
B,D.

We can see that these algorithms take similar steps. The
step in which C0,∞

A,A was the current contact corresponds to
the step in which A was the current vertex, as both explored
contacts C0,1

A,B and C2,3
A,B . Similarly, the step in which C0,1

A,B

was the current contact corresponds to the step in which B
was the current vertex. But the final step in the contact graph

algorithm, in which C2,3
A,B was the current vertex, does not

have an analog in the multigraph. In fact, reviewing the steps
in the contact graph, we can see that letting C2,3

A,B be the
current contact is a redundant step, since it can only reach
contacts with source B. These contacts were all explored
when C0,1

A,B was the current contact, and their arrival times
can no longer be improved, because C0,1

A,B had earlier arrival
time than C2,3

A,B . The steps for the multigraph do not include
any analog of this redundant step, because once B has been
marked as visited, no contacts with destination B need to be
viewed again. This behavior is not specific to this example;
the ideas shown here generalize to a proof that a Dijkstra
search through a contact graph takes at least as many itera-
tions as a modified Dijkstra search through the corresponding
multigraph. The proof will be given in [15].

Pseudocode for the algorithm is provided here. We closely
follow the format of the original Contact Graph Dijkstra
Search in [11] to allow for an easy comparison. A proof of
correctness can be given that mimics the proof for the classic
version of Dijkstra’s algorithm, relying on the fact that arrival
times cannot decrease as a path is extended. Future work may
include an alternate version of Yen’s algorithm, which is also
used by CGR (see [11]).

Algorithm 1 Contact Conditional Dijkstra’s Algorithm
Data: Contact plan CP , root vertex vr, destination vertex

vd, initial time
Result: Route R from vr to vd with best delivery time BDT

1: construct vertex set V from all sources and destinations
of CP

2: for all v ∈ V , set v.arr time =∞, v.visited = False,
v.pred = {}

3: vr.arr time = initial time
4: vcurr = vr
5: while true do
6: CCRP(CP,V, vcurr)
7: vnext = VSP(V)
8: if vnext 6= {} then
9: vcurr = vnext
10: else
11: break
12: end if
13: end while
14: route reconstruction using predecessors to find R
15: BDT = vd.arr time

5. SUMMARY GRAPHS
The time-varying nature of space networks makes it chal-
lenging to use traditional graph theory and graph analysis
to model delay tolerant networks. Static graphs are simple
methods of conceptualizing networks, but often do not fully
represent the heterogeneity of delay tolerant networks. Static
graphs lack the nuance to convey edges that come in and out,
extensive traversal time, and lack of end-to-end connectivity
that are characteristic of space networks. On the other hand,
while temporal graphs better encapsulate space networks,
they are far more complicated to work with and make graph
analysis more challenging.

In this section, we propose a novel concept of graph summa-
rization. In essence, we convert a complex, dense data struc-
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7Algorithm 2 Conditional Contact Review Procedure (CCRP)
Data: CP , V , vcurr
Result: Revised V
1: for contact C ∈ CP such that C.src = vcurr do
2: if C.end ≤ vcurr.arr time then
3: skip C
4: end if
5: if C.dst.visited then
6: skip C
7: end if
8: arr time = max(C.start, vcurr.arr time) +

C.owlt+ owltmgn
9: if arr time < C.dst.arr time then
10: C.dst.arr time = arr time
11: C.dst.pred = C
12: end if
13: end for
14: vcurr.visited = True

Algorithm 3 Vertex Selection Procedure (VSP)
Data: V
Result: vnext
1: vnext = {}
2: tearliest arrival =∞
3: for vertex v ∈ V do
4: if v.visited then
5: skip v
6: end if
7: if v.arr time ≥ vd.arr time then
8: skip v
9: end if
10: if v.arr time < tearliest arrival then
11: tearliest arrival = v.arr time
12: vnext = v
13: end if
14: end for

ture (that of a digraph sequence) into a compressed represen-
tation of a single weighted digraph. Summarization captures
essential characteristics of a digraph sequence, without the
overwhelming storage cost of maintaining the full sequence.
In addition, summarization can extract salient information
that may not be so obvious from the full sequence.

We will loosely use the term “summary graph” to refer to
a weighted digraph that arises from a “summarization” of a
graph sequence. As from before, we assume the definition of
a digraph and that of a discrete-time digraph sequence.

Edge Weighting and Completeness—We can also define the
concept of an “edge weight” that assigns a weight to each
edge. More precisely, we write a digraph G = (V,E,w),
where

w : E → R≥0 ∪ {+∞}.
This weight could represent a variety of things for a static
(di)graph. Introductory examples of edge-weighting tech-
niques include, but are not limited to:

1. The amount of time required to traverse the edge
2. The capacity of the edge
3. The cost of traversing the edge
4. The percentage of time in which the edge is disconnected
in a given time interval
5. The percentage of time in which the edge is connected in
a given time interval

Notably, we have not placed any conditions so far on the
weight function, other than that it be a non-negative real num-
ber or positive infinity. By convention, though, depending
on what the edge weight represents, we may “extend” the
domain of the weight function to be defined over all pairings
V × V and assign any pair (i, j) /∈ E the weight 0 or +∞
depending on context. In this sense, we will consider each
(di)graph in a sequence to be a complete (di)graph to make
certain definitions easier to wrangle.

Finally, we must harmonize the definition of the weight func-
tion with a digraph sequence, as it is not immediately obvious
how this definition would extend to a graph sequence. We
define it as follows

G = (Gt = (V,Et)t∈T, w)

where
w : V× V× T→ R≥0.

In other words, the weight function maps from a pair of
vertices and the time-indexing set to a real-number. In our
notation, we will write we : T → R≥0 to refer to the weight
function of a particular pair of vertices e = (i, j).

We finally impose one additional condition: that we be
integrable with respect to the standard measure of the time-
indexing set.

Example: Traversal-Time DiGraph Journey Summarization
with Traversal Time—We already defined a few simple meth-
ods of attributing edge weights above. In this section we walk
through a more complex example of defining edge weights.

Here, we assume that the weight function on the digraph
sequence defines the “traversal time” of a particular edge,
i.e. how many units of time are required to traverse the edge.
For now, we only consider continuous-time sequences, but
our definitions could be easily adapted to the discrete-time
case with a bit of care. Here, by convention, traversal time is
+∞ if there is no edge; therefore, we can assume our digraph
sequence is complete.

We define the velocity as ν(i,j)(t) =
1

w(i,j)(t)
. We denote

the velocity to be +∞ if w = 0 and ν = 0 if w = +∞.
Therefore, we can define the notion of s-traversal time of an
edge ( tts((i, j)) ) as follows:

Define the s-traversal completion set

tcss((i, j)) =

{
x :

∫ x

s

ν(t)dt ≥ 1

}

with the convention that
∫ y

y

(+∞)dt = +∞. If tcss((i, j))

is empty, then tts((i, j)) = +∞; otherwise,

tts((i, j)) = inf tcss((i, j))− s.

What does this definition accomplish? It captures the amount
of time (in some time unit) it takes to traverse one whole edge
given that the traversal velocity is given by ν. We define it
through the inf of a set to handle some analytic issues with
+∞. As a helper, we define the s-traversal end time of an
edge tets((i, j)) = inf tcss((i, j)), which is defined to be
+∞ if tcss((i, j)) is empty.
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We will, therefore, define the s-traversal time of a path (using
all of the previous definitions of a path) with the following
recursion:

tts(P )1 = tts(e1)

tets(P )1 = tets(e1)

tts(P )2 = tttet
s(P )1(e2)

tets(P )2 = tets(P )1 + tts(P )2

...

tts(P )k = tttet
s(P )k−1(ek)

tets(P )k = tets(P )k−1 + tts(P )k

with the convention that if tt or tet reaches +∞ at any step,
then so do the rest. We can write tts(P ) = tts(P )k.

Thus, we can define the notion of a shortest path SP t(i, j)
as the set of shortest paths minimum cost with respect to s-
traversal time and that have s-traversal time. This set could be
empty. We can, therefore, use the same definitions as before
of ω, i.e. shortest path participation.

As such, we have developed a model for defining summariza-
tion functions along edge weights, where edge weights can
represent higher-level changes about the network structure
and connectivity. In instances where the complexity of time-
varying graphs proves too computationally heavy for graph
analysis, summary graphs could serve as a bridge from static
graphs to temporal graphs.

6. ZIGZAG PERSISTENT HOMOLOGY AND
APPLIED TOPOLOGY

As discussed in earlier sections, graphs have long been used
as a tool to model communication networks. One weakness
all graphical models share is computational intensity. As the
number of communication devices in the network increases,
the computational complexity drastically increases. Even
worse, the number of space communication devices increases
by the day [18]. As such, we need tools to reduce the compu-
tational complexity of graph-dependent network algorithms.

One proposal to reduce computational complexity involves
subnetworking. Subnetworking is where certain nodes are
grouped together based on different factors, such as continu-
ous connectivity or far removal from another network system.
But for any subnetwork grouping, one can ask whether this
network is “close enough” to this other system. Zigzag
persistence is a tool from algebraic topology that captures
the characteristics of a space as it evolves over time. In the
context of space networking, zigzag persistence tells us how
the number of connected components changes with respect
to time. Further, there exists a measure called the bottleneck
distance which provides a way to measure distance between
two zigzag persistence diagrams. The goal is to show that a
“good” subnetworking decision would correspond to a small
bottleneck distance.

Introduction to Zigzag Persistent Homology

In this section we explore zigzag persistent homology, some-
thing which allows us to track network connectivity changes.
Zigzag persistent homology is based off of standard persistent

homology, a tool from algebraic topology that is used to study
features of topological spaces. The main differences between
zigzag and standard persistence stems from the inclusion
maps; in zigzag persistence, the inclusion maps are allowed
to go either direction whereas in standard persistence, they
are restricted to a single direction. This difference allows us
to consider changes in connectivity as time elapses. First,
we define all of terms needed to apply zigzag persistence to
a space network. Then, we look at two different examples
of space networks and discuss how zigzag persistence can
provide information about potential subnetwork groupings.

Let Xi be a topological space. We define a zigzag sequence
of topological spaces as

X1 ↔ X2 ↔ . . .↔ Xn

where↔ is an inclusion map that either maps Xi → Xi+1 or
Xi ← Xi+1. Recall, the homology functor (with coefficients
in a field) is a functor that maps topological spaces to vector
spaces. Hence, the zigzag module of a zigzag sequence of
topological spaces is

Hp(X1)↔ Hp(X2)↔ . . .↔ Hp(Xn).

We can use zigzag persistence (with Z/2Z coefficients) to
understand the structure and features of a topological space.
For example, H1(Xi) describes how many 1-dimensional
holes are in Xi. In the example below, we see that a 1-
dimensional hole is born at t = 2 and dies at t = 3. We will
use this tool as a way to understand the structure of space
networks and use it to determine feasible subnetworking
techniques.

LetGt be a graph with vertices Vt and edges Et at time t. We
define a time-varying graph G to be a sequence of graphs,
G1, G2, . . . , Gn that changes over time t. For this paper, we
will first assume that our vertices do not change. Thus for
any time step t, we have a graph Gt(V,Et). The most natural
way to model a communication network is to treat satellites,
ground stations, and other members of the network as the
vertices and treat contacts between members of the network
as edges. Thus, for any Gt, this forms a simplicial complex.
From this simplicial complex, for a given time interval [1, n],
let N be the zigzag sequence

G1(V,E1)↔ G2(V,E2)↔ . . .↔ Gn(V,En).

Note, each arrow represents the inclusion map between two
graphs. This arrow will change direction based on the
direction of the inclusion. Then, we can apply the homology
functor to our zigzag sequence to get

Hp(G1(V,E1))↔ Hp(G2(V,E2))↔ . . .↔ Hp(Gn(V,En)).

Therefore, we can calculate the p-th homology for our zigzag
sequence of graphs. Note, for p ≥ 2, the p-th homology
of a graph will be zero, so we are specifically interested in
p = 0, 1.

Zigzag persistence of a simple network

A basic network example is as follows. Consider a network
with 3 nodes, V = {a, b, c}. Suppose connection ab is born
at time t = 0 and dies at t = 3, connection bc is born at time
t = 1 and dies at t = 3, and connection ac is born at time
t = 2 and never dies. Figure 3 is a pictorial representation of
these graphs.

Hence, our zigzag sequence is given in Figure 3.

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2024 at 19:04:28 UTC from IEEE Xplore.  Restrictions apply. 



9

a

b

c
t = 0

a

b

c

t = 1

a

b

c
t = 2

a

b

c

t = 3

a

b

c
t = 4

G1(V, {ab})

G1,2(V, {ab, bc})

G2(V, {ab, bc, ac})

G2,3(V, {bc, ac})

G3(V, {ac})

Figure 3. The zigzag sequence for the triangle example.

To find the zigzag persistence barcodes, we first calculate the
persistence barcode at t = 0. We have two components born
at t = 0, vertex c and the vertices and edge needed for edge
ab which corresponds to the birth of two 0-dimensional bars.
At time t = 1, the 0-dimensional bar corresponding to c
dies. Then at t = 2, a one-dimensional hole is born which
corresponds to the birth of a one-dimensional bar. Time t = 3
shows the death of the 1-dimensional bar and finally at t = 4,
a 0-dimensional bar is born that corresponds to node b. In
summary our barcode consists of 4 bars, 3 in dimension 0 and
1 in dimension 1 with birth and death times, (0,∞) (0, 1),
and (4,∞) for the 0-dimensional bars and (2, 3) for the 1-
dimensional bar.

As an extension of this simple case, consider the network
formed by the Lunar Reconnaissance Orbiter (LRO), the
Mars Reconnaissance Orbiter (MRO), and the deep space
network ground station located at Canberra, Australia. Using
SOAP, the modeling program introduced in Section 2, we
generate the connection times for this network over one day.
In this example, we have 20 connections that take place at
different times throughout the day.

Note, calculating the zigzag persistence by hand for even this
space network would be tedious. Instead, we use the software
package Dionysus [19], which calculates the 0-dimensional
and 1-dimensional homology for network. See Table 4 for
the small example birth and death times of each 0 and 1
dimensional homology bar. Observing this data, we can
conclude that there are no immediately obvious subnetwork
groupings, because there are no 1-dimensional homology
bars that last for a long period of time. Intuitively, this follows
from the size of our network.

Calculating the zigzag persistence summarizes the connectiv-
ity information of the network. The 0-dimensional homology
tells us how often we have a communication device that is
disconnected from the network. Further, the 1-dimensional
homology captures when all communication devices are con-
nected. This information can be used to group satellites by
either continuous connectivity or by location. This example
is too small to observe the behavior we want to use to split
our network into subnetworks. Hence, we consider a larger

(Birth, Death) (Birth,Death) (con’t)
0-dim 0-dim

(194.984, 3980.21) (54650.5, 57151.6)
(7001.92, 10870.5) (56556.1, 59102.1)

(0, 17688.8) (61457.3, 63958.7)
(13808.9, 17760.7) (61457.4, 65992.4)
(22043.8, 24552.3) (68264.2, 70765.7)
(20615.8, 24650.9) (68264.3, 72882.6)
(28947.8, 31441.6) (75071.1, 77572.8)
(27422.7, 31541.2) (75071.3, 79772.9)
(35851.1, 38331.2) (81878.2, inf)
(34229.7, 38431.4) (81878.1, inf)
(41036.6, 45170.6) (0 ,inf)
(42753.4, 45219.3) 1-dim
(47843.5, 50344.6) (45321.7, 47843.4)
(49654.9, 52104.2) (52211.9, 54650.3)

Figure 4. Zigzag persistence for the simple network
example.

example.

Example of a larger network

To test this concept, we chose a selection of satellites and
ground stations that intuitively lend themselves to subnet-
working. Consider the network with the MRO, LRO, TDRS
8, TDRS 10, TDRS 12, TDRS 13, Canberra, Madrid, Gold-
stone, White Sands, and Guam, see Figure 5. We use SOAP
to model the simulated network; see Figure 5 for the network
connectivity for a single time step.

Figure 5. A picture of the larger example network from the
SOAP simulation. Note, connections are denoted by a line

between two devices.

Intuitively, it might make sense to group the four TDRS satel-
lites together, as they are always connected. Alternatively, we
could group each TDRS with the ground station it is closest
to. There might be additional groupings not listed, but zigzag
persistence might provide insight as to what those groupings
are. Over the course of 1 day, the zigzag persistence diagram
has 110 bars which captures the connectivity of the network
for that day. Of note, there are eight 1-dimensional holes
that live for the entire day. Hence, this tells us that some
subsection of satellites are always connected. We can use this
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information to construct a new network where those satellites
are represented by a single node. Further work will be done to
test the different subnetworking options by recalculating the
zigzag persistence of the new network model and computing
the bottleneck distance between the two networks. Please see
Section 9 for more detail.

7. GRAPH VARIETIES AND APPLIED
ALGEBRAIC GEOMETRY

In [3], the authors describe a way to realize Dijkstra’s al-
gorithm for pathfinding in a graph G as the ability of local
sections of a suitable sheafF to lift to global sections. In [20],
a general procedure is described to construct from a graphG a
quasiprojective scheme χ(G) that in some sense parametrizes
the various embeddings of G in P2.

The various embeddings of a graphG in P2 are represented as
points of χ(G). χ(G) is a closed subscheme of P2 endowed
with the Zariski topology. As points are not open in the
Zariski topology on χ(G) in general, naı̈evly attempting to
place a sheaf F on χ(G) that models the pathfinding sheaf
described in [3] fails. In essence, the Zariski topology is too
coarse to encode useful topological information. To correct
this failing with a view towards constructing a sheaf on χ(G)
that encodes the same data as that of the pathfinding sheaf on
G itself, we introduce the notion of the discrete site on χ(G).

Graph Varieties

In this section, we closely follow [20], summarizing the parts
which are relevant and necessary for our application.

Fix, once and for all, an algebraically closed field k. Note
that k can be replaced by an arbitrary commutative ring with-
out substantial change to the following summarized theory.
Throughout this section, let G = (V,E) be a graph, with
#V = n and #E = r. We define

Gr(G) =
∏

v∈V (G)

P2 ×
∏

e∈E(G)

P̂2

The Zariski topology on (P2)n×(P2)r induces a topology on
Gr(G). For a point P ∈ Gr(G) and a vertex v ∈ V (G) (resp.
an edge e ∈ E(G)), we write P (v) (resp. P (e)) for the image
of P under the projection onto the coordinate corresponding
to the vertex v (resp. edge e). P ∈ Gr(G) is called a picture
of G if, for all v ∈ V , e ∈ E,

v ∈ e =⇒ P (v) ∈ P (e) (*)

As the condition (*) can be described in terms of Plücker co-
ordinates on χ(G), it is Zariski closed in Gr(G). In general,
the picture space χ(G) need not be Zariski connected. We do,
however, have the following useful and easily verified fact:

Proposition 7.1. If G1, . . . , Gs are the connected compo-
nents of G, then

χ(G) ∼= χ(G1)× · · · × χ(Gs)

By virtue of (7.1), when attempting to compute explicit equa-
tions that cut out the picture space of χ(G), we may assume
without loss of generality that G is connected, carrying out

the necessary computations on connected components and
taking products at the end if not.

Let U0 be the standard affine open subset of P2 defined by

U0 := {[a0 : a1 : a2] : a0 ∈ k∗, a1, a2 ∈ k}
= {[1 : a1 : a2] : a1, a2 ∈ k}

The affine picture space χ̃(G) of G is χ̃(G) := χ(G) ∩ U0.

The Equations Defining χ̃(G)

Once again we closely follow the general theory described in
[20], summarizing the portions important to our application.

χ̃(G) is defined, as a subvariety of

A2n+2r = SpecAG

where
AG = k[{xv, yv,me : v ∈ V, e ∈ E}]

by

V (Ie)e∈E,e=[v,w] (1)

where
Ie = (yv −me(xv − xw))

In essence, χ̃(G) parametrizes the various possible embed-
dings of G in P2.

Moreover, if P = (v1, . . . , vs, v1) is a polygon inG, and ei =
{vi, vi + 1} for i = 1, . . . , s, then the following equation,
which represents traversal of P along each edge

L(P ) =
s∑
i=1

mei(xvi − xvi+1
) = 0 (2)

must be satisfied. We can therefore take

RG = k[{me, xv : v ∈ V, e ∈ E}],

and write χ̃(G) = A1 ×X where

X = SpecRG/(L(P ))P .

Computing L(P )

In this section, we give a brief description of the algorithm
described in [20] to compute L(P ). We also provide an
explicit example of such a computation, as well as code
written in Macaulay2 that, given a directed graph, produces
the polynomials L(P ).

In order to compute the L(P ), we simply need to determine
all of the polygons in G.

For each edge e ∈ E(G), choose an orientation of e arbitrar-
ily. For e = [v, w] ∈ E a (now oriented) edge, define

xe = xw − xv

Let C = Z[E(G)]/ ∼, where [v, w] ∼ −[w, v]. Let

Z =

{∑
e

cee ∈ C :
∑
e

cexe = 0

}
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11be the submodule of C generated by the cycles associated to
polygons P = (v1, . . . , vs, v1):

z(P ) =
s∑
i=1

[vi, vi+1].

Let T be any spanning tree of G, and set S = E r T . For
any edge e = [v, w] ∈ S, the set T ∪ {e} contains a unique
polygon PT (e) = (v1 = v, . . . , vs = w, v) which in turn
gives rise to a cycle

zT (e) =

∑
f∈T

cTe,ff

− e
where the coefficients cTe,f ∈ {0, 1,−1}. The coefficients
cTe,f can be thought of as describing how to traverse the edge
f ∈ T as we trace out the polygon PT (e).

We can define an injective map of Z-modules

[v, w] 7→ mv,w(xv − xw) : C → R′G

that sends Z to the polynomials L(P ). It follows that
upon fixing any spanning tree T of G, we obtain an ideal
(L(PT (e)) : e ∈ S) that defines χ̃(G).

Explicitly, if e = [v, w] ∈ S, then

L(PT (e)) =
∑
f∈T

cTe,f (me −mf )xf .

The short calculation required to obtain this equality can be
found in [20].

The ideal (L(PT )(e) : e ∈ S) that cuts out χ̃(G) can then be
conveniently written as a matrix equation:

MTXT = 0

where

MT = [cTe,f (me −mf )]e∈S,f∈T ,
t(XT ) = [xf ]f∈T

Example 7.2. Let G = C4 be the cycle graph on four
vertices. We fix the following (arbitrary) orientation of the
edges E(G):

1

2

3

4

.

Let T be the spanning tree defined by T := {[1, 2], [2, 3], [3, 4]}.
Then S = E(G) r T = {[1, 4]}. Taking T ∪ {[1, 4]} gives
the unique polygon

PT ([1, 4]) = (1, 2, 3, 4, 1) = [1, 2] + [2, 3] + [3, 4]− [1, 4].

It follows that the matrix CT = (cTe,f )e∈S,f∈T is

( [1, 2] [2, 3] [3, 4]
[1, 4] 1 1 −1

)
.

We can read off the matrix MT directly from this:

MT = (m14 −m12 m14 −m23 m34 −m14) .

Finally,

MTXT =(m14 −m12)(x2 − x1)

+ (m14 −m23)(x3 − x2)

+ (m34 −m14)(x4 − x3)

so we see that

χ̃(G) = Spec
k[m12,m23,m34,m14, x1, x2, x3, x4]

(MTXT )
.

In this example, the orientation we chose was naturally mo-
tivated by our numbering of the vertices of G. That is, given
an undirected edge e = [v, w] = [w, v] between two vertices
in V (G), we chose to direct this edge as [v, w] if v < w and
[w, v] otherwise. In applications to space networking, there
need not be such a canonical choice of orientation of edges.
As choosing a different orientation of an edge corresponds
to multiplication by a unit in the ideal (MTXT ) defining
χ̃(G) however, we can simply choose orientations of edges
at random without affecting the ideal that defines the picture
space of our network.

Code to generate the affine scheme χ̃(G), with k = C is
available for download3. It relies on [21] and [22].

Sheaves on Sch(disc)

The general theory of sites and Grothendieck topologies is
concisely summarized in [23].

Let S = Sch be the category of all schemes. That is, the
category whose objects are schemesX and whose morphisms
are morphisms of schemes. We endow this category with
the discrete Grothendieck topology. Under this topology, any
sieve4 on any object is covering. By abuse of nation, we will
call the resulting site S.

For any picture (i.e. point) P ∈ χ(G), we can consider
P to be a closed subscheme of χ(G). The collection of
all pictures in χ(G) generates a sieve on the object χ(G).
Indeed, P ∈ Ob(S/χ(G)) since each picture P has a natural
inclusion morphism P ↪→ χ(G), and we can take U to be
the sieve on χ(G) generated by the collection of morphisms
{φP : P ↪→ χ(G)}. Explicitly, U is the collection of
morphisms φ : X → χ(G) in S that admit a factorization:

X χ(G)

P

φ

φP

for some φP : P ↪→ χ(G).

3It can be found at https://github.com/SriramGDev/
graph-varieties
4The reader is referred to [24] for details.
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By definition, a presheafF on S is a contravariant functorF :
S → Set. Again by definition, the U-local section data is the
data of, for each morphism X → χ(G) in U , a section sX ∈
F(X ) such that for all morphisms Y → X in S, sX |Y =
sY . In particular, this allows us to associate to each inclusion
P ↪→ χ(G) a set. More generally, we can work with C-
valued presheaves and sheaves for some arbitrary category
C as opposed to Set in order to associate to each picture
P ∈ χ(G) an object F(P) ∈ C.

8. GAME THEORETIC NETWORKING
While game theory has found success in elucidating ter-
restrial network interactions, little research has been done
to implement game-theoretical approaches on delay toler-
ant networks. As space communications becomes increas-
ingly complex, the need for autonomous or semi-autonomous
decision-making becomes apparent.

Game theory provides a foundation for how decision-making
could function in a non-cooperative game with incomplete
information. Under a non-cooperative game, individual ac-
tors in a space network would be able to make decisions
that maximize their own payoffs or minimize their individual
transmission cost without losing optimal transmission across
the entire network. In [25] the authors introduce the notion of
network games with incomplete information, wherein players
have an understanding of the size of the network, but not
of the individual connections made between players. This
is especially relevant to delay tolerant networks, in which
vertices are countable, but connections are not consistently
present.

It is worth noting that while cooperative games provide the
strongest foundation for network optimization, creating a
cooperative game across an entire delay tolerant network
lacks feasibility. Because space networks are particularly
heterogeneous and variable, creating a global cooperative
game proves too challenging. On a time scale of a given
transmission lifespan, the network might not be able to
share information back and forth to cooperate end-to-end,
rendering any algorithm that relies on complete information
useless. There is a potential for cooperative games within
the sub-networks described in Section 9. This would create a
grouping of smaller, cooperative games to form a larger space
network. However, instances of transmission from one sub-
network to another would require another layer of decision-
making structure on top of the given sub-networks. Thus,
there is potential for a non-cooperative game on cooperative
sub-networks.

We can define a game as a graph G = (V,E) where
players are represented by vertices in a directed graph and
connections are represented as time-stamped edges between
the vertices. In game theory, the Nash equilibrium is a set
of strategies for each player such that no player unilaterally
would deviate from their initial strategy, even after witnessing
other players’ choices.

If we are able to frame a space network as a game, then we
can utilize the concept of a Nash Equilibrium to measure
how individual player’s path optimization translates into an
equilibrium for the network. A Nash Equilibrium occurs
in a non-cooperative game with incomplete information as
described above. We define a Nash Equilibrium as the point
in a game wherein no individual player would rationally make
a unilateral move away from equilibrium. Thus, the network

reaches a stable equilibrium without consistent communica-
tion between players.

It is worth noting that Nash Equilibrium does not always cor-
respond to the socially optimal outcome. A socially optimal
outcome sums the costs (or payoffs) of the entire network
and can be derived using communication between players
and cooperation towards a network-wide optimal outcome.
However, there are instances where a Nash Equilibrium
in an incomplete, non-cooperative game is identical to the
socially optimal network distribution. In [26] the authors
demonstrate that a Nash Equilibrium designed to achieve
100% connection across the network while minimizing the
number of edges produces a social optimum, that is the
Nash Equilibrium is the socially optimal outcome. If we
can show that a Nash Equilibrium corresponds to a socially
optimal, network-wide outcome, then we can suggest that
communication between nodes in a network is not always
necessary, therefore significantly reducing communication
burdens. Even if there is a substantial gap between a Nash
Equilibrium and a socially optimal equilibrium, we can still
use the Nash Equilibrium as a metric for the benefits pro-
duced from communication between nodes.

Additionally it is possible that a heterogeneous space network
need not utilize exclusively Nash Equilibrium or a more
traditional cooperative socially optimal outcome. In theory,
categorizing types of transmission could be useful in deciding
instances where a Nash Equilibrium would be a sufficient
foundation for decision making or where complete informa-
tion is needed for end-to-end transmission.

Game Theoretical Solutions for Congestion

There is also potential for a game-theoretical approach to
congestion-based transmission, where traversal time across a
given edge is a function of the number of bundles transmitted
across the edge. In instances where traversal time is not
constant, modeling techniques that allow for adaptability with
incomplete information are especially important.

The graph below in Figure 6 is an example game with 6
nodes. There is one source node (A) and one sink node (F).
We assume that there are two paths bundles can take to get
from source to sink: A-B-C-F and A-D-E-F. We take the edge
weights to be traversal time.

Note that both paths have a congestion function, where the
traversal time is a function of the number of bundles being
sent along that edge. In this example we assume that we must
transmit 100 bundles from A to F, and that no data can be
temporarily stored at the vertices along the way.

In this example we can think of each player as a bundle, and
we can assume that each bundle wants to take the path that
will minimize their individual traversal time.

To find a Nash Equilibrium we need to determine the number
of bundles that should traverse the upper and lower paths re-
spectively such that no bundle would decrease their traversal
time by switching to the other bundle.

Because both upper and lower paths have equivalent traversal
times for their non-congestion based edges, 10 seconds and
20 seconds respectively, we can just focus our attention on
the edges where traversal time is a congestion function,

x/50 = y/40,
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A

B C

D E

F

x/50

10

20

10

20

y/40

Figure 6. Example game

and a Nash Equilibrium occurs when

x = 56, y = 44.

Thus the traversal time for an individual bundle along the
upper path is

(56/50) + 10 + 20(1.12 + 10 + 20) = 31.12,

and the traversal time for an individual bundle along the lower
path is

20 + 10 + (44/40)20 + 10 + (1.1) = 31.1.

The reason that this solution is a Nash Equilibrium is because
any bundle that switches paths would incur a longer traversal
time. For example, if a bundle from the upper path switches
to the lower path, the congestion function is now:

20 + 10 + (45/40) = 30 + 1.125 = 31.125,

and thus the bundle would only be increasing the traversal
time upon switching paths.

9. CONCLUSION AND FUTURE WORK
In this paper, we have presented several topics that we hope
can contribute to a firmer mathematical foundation for De-
lay Tolerant Networking. Here we summarize the different
approaches and how they relate to foundational networking
aspects. Then, we dive deeper into how this research may
continue with a future works portion for each topic.

Putting it all together

Much like the layers of the OSI model represent different
layers of abstraction, our mathematical models represent
different layers of abstraction in network understanding. At
its core, a network is built on the connections present, and we
present several different methods for modeling connectivity
in a time-evolving network. Each comes from graph theory,

but each presents its own approach with corresponding pros
and cons.

• Temporal graph theory provides precise connection infor-
mation for time-evolving networks with a variety of repre-
sentations. Different representations can be better or worse
as networks grow in size.
• Directed multigraphs are a fruitful data structure for rout-
ing algorithms, as demonstrated by the updated pathfinding
algorithm for CGR presented in Section 4.
• Summary graphs provide useful statistics for comparing
connection availability, and may provide bridges from tempo-
ral to more traditional graph theoretic results using centrality
measures. However, summary graphs represent a potential
for information loss, such as ordering of intervals, that could
be extremely relevant for different applications.

Once connectivity is established, being able to analyze con-
nectivity structures and discover strong subnetworking op-
tions is our next layer up. While small networks might be
better understood directly, part of the goal in introducing
algebraic objects is to provide support in returns to scale.
Invariants from applied algebraic geometry and topology can
be brought to bear on networks of any size.

• Homology algebraizes connectivity information from a
graph enabling computer legibility and returns to scale.
• Zigzag persistent homology provides a means of track-
ing continuous chunks of connectivity over time, including
joining and separating connections. This provides a strong
foundation for automated subnetworking decisions.
• Graph varieties provide a different algebraic interpretation
of connectivity information which enables more direct rela-
tions to more powerful data structures, such as sheaves.

Once structures are established and analyzed, optimization is
the next layer up. Game theory provides an interesting frame-
work for constructing and comparing network optimization
approaches that may be helpful in addressing congestion in
delay tolerant networks.

Temporal Graph Theory

Temporal graph theory is a still young field with plenty of
room for growth. While we introduce some of our work
in formalizing temporal graphs in Section 3, there is plenty
more to say and prove about temporal graphs and graph
sequences in forthcoming papers. This includes studying
various properties of temporal graphs and determining ex-
tensions of network properties to temporal networks. One
direction of exploration in temporal graph theory that could
be particularly fruitful for space networks is the study of
periodic temporal networks. The fact that orbits are often
naturally periodic could be leveraged in the study of periodic
temporal graphs and leveraged for the benefit of network
analysis.

Another key thing to note is a shift in information available
in a temporal graph. In the cases we are considering in this
paper, the graphs are pre-determined and known, so global
statistics can be computed. However, in practice we may only
know the current configuration of a network without knowing
its future configurations – perhaps relying on probability to
provide possible futures. A temporal graph construction that
views temporal graphs as a dynamical system rather than
a fixed object, would be extremely valuable to the field.
This would also be remarkably applicable to future space
networks.
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Another consideration is how local perspectives influence the
system. Note that from the vantage point of any given node
at any given time, its imagining of the network will differ
from every other node. As such, constructing network views
locally will have great influence on consistency in routing
across different components. It is imperative that tools, such
as sheaves, are utilized to synthesize and validate consistency
of data across temporal networks. This may be useful in the
probabilistic or deterministic settings.

Directed Multigraphs

In Section 4, we proposed a method for modeling time-
evolving networks using directed multigraphs, and provided
an alternate approach to pathfinding in Contact Graph Rout-
ing based on these multigraphs. Upcoming work in [15] will
provide more of the details of this alternate algorithm, includ-
ing a proof that it requires less than or equal to the number
of iterations taken by the previous Contact Graph Dijkstra
Search. It will also include experiments on simple networks
simulated in SOAP that compare the two algorithms.

Future work in this area will likely continue to reformulate
CGR in the language of directed multigraphs. As mentioned
above, one opportunity for this change in perspective may
be in the implementation of Yen’s algorithm, which uses
Dijkstra’s algorithm repeatedly. While the existing version of
CGR uses a version of Yen’s algorithm for contact graphs,
it is likely this could also be put in the framework of the
multigraphs considered here. We hope that reformulating
CGR in the language of multigraphs will not only increase
the speed of computations but also lead to a more transparent
approach to routing and serve as a foundation for future
algorithms.

Centrality Measures and Summary Graphs

Summary graphs represent an interesting way to collect
summary statistics for time-varying graphs. Determining
which statistics are worth representing in this structure is a
significant future project. Since summary graphs represent a
kind of lossy compression of time-varying graph structures,
knowing which statistics are preserving valuable information
from the time-varying graphs is valuable outright. Moreover,
if we want to feed this information into a machine learning
algorithm for optimization, summary graphs seem primed for
supplying concise yet relevant information.

Another interesting application of summary graphs comes in
the form of network centrality measures. Typical network
centrality measures are better suited to static graphs rather
than dynamic graphs. So, applying network centrality mea-
sures to the summary graph can yield interesting ways to
detect central nodes in a dynamic graph. Also, different sum-
mary statistics will likely correspond to different rankings for
the same centrality measures. Such a comparison would be
of great interest to us.

There are also adaptations of network centrality measures
for time-varying networks already. It would be interesting
to compare the results of these dynamic centrality measures
with the same measures applied to different summary graphs.
Certainly, this could detect some of the information loss from
compressing to the summary graph.

Zigzag Persistent Homology and Applied Topology

Our goal is to construct a subnetwork and compare its zigzag
persistence diagram to the zigzag persistence diagram of the
original network. One way we can do this is by applying

the bottleneck distance to the two diagrams. The bottleneck
distance can be described in the following way. Suppose we
have the zigzag persistence diagrams of two space networks.
The two networks are “close” if the birth and death times
of a bar in one diagram are close to the birth and death
times of a bar in the other diagram. If there is a nice
correspondence for every bar in the diagram, then the two
diagrams are considered close per the bottleneck distance.
For a more precise understanding of the bottleneck distance,
please see the paper on zigzag persistence by Edelsbrunner
and Harer [27].

Another way we hope to apply zigzag persistence to space
networking is to apply it within the context of CGR. After
constructing the subnetworks, one can construct a contact
plan with this new structure. This reduces the number of ver-
tices which in turn reduces the computation time. Again, we
can use the bottleneck distance to compare the two networks
and to see if this small change does not drastically change
the underlying structure of the network. We hope to use this
as a way to justify subnetwork construction and show the
feasibility of the groupings.

The final extension we would like to explore is looking
at the clique complex of the network as opposed to the
simplicial complex associated to the network. A collection
of vertices with all pairwise connections is a simplex in a
clique complex; if we have three points connected, we fill
in the triangular face, if we have four points connected to
each other, we fill in the tetrahedron. This provides more
information about the level of connectivity and the interaction
between multiple devices.

Graph Varieties and Applied Algebraic Geometry

The theory of graph varieties allows us to model a static
network as an algebraic variety. Space networks, however,
are not static. Thus, it is necessary to formulate a theory of
graph varieties that can be applied to temporal networks. A
naı̈ve first approach to such a theory is to view a temporal
network as a sequence of graphs and simply compute the
corresponding sequence of graph varieties. This approach
does not take into account the relationships between graphs,
so it is not optimal. It would be more beneficial to build
a single graph variety that encodes the data of a temporal
graph or interpret the picture variety of a temporal graph as
a suitable subvariety of the picture variety of a sufficiently
general graph. Subsequently, an algebro-geometric analogue
of the Dijkstra sheaf would, in theory, give insight into the
problem of finding shortest paths in a temporal network.

Not explored in this paper is the theory of cellules, introduced
in [20]. These provide a natural way to interpret subnetworks
of a static network modeled as a graph as points of picture
varieties associated to these static networks. Solving shortest
path problems in subnetworks could then be interpreted as
solving an analogous problem on the points of the picture
variety corresponding to these cellules.

Game Theoretic Networking

As space networks become increasingly complex, requiring
global communication for decision-making is likely impossi-
ble given propagation delays that outlast windows of oppor-
tunity for real-time feedback. It is clear that new modeling
techniques for routing decisions are essential for further space
exploration. Game theory provides a well-developed founda-
tion for understanding how decision-making might function
in a network with incomplete information.
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15It is, however, likely that there are subnetworks that can
share enough data to be cooperative although between two
such subnetworks cooperation is infeasible. Such mixed
approaches have been used to study Wi-Fi congestion in
apartment buildings and could be generalized and reapplied to
large-scale DTNs [28]. It should be investigated if the output
could be used for real-time decision making for routing
decisions, for example for load balancing.
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