
1

Pattern Recognition Letters
journal homepage: www.elsevier.com

Spatiotemporal k-means

Olga Dorabialaa,⇤⇤, Devavrat Vivek Dabkeb, Jennifer Websterc, Nathan J. Kutza,d, Aleksandr Aravkina

aDepartment of Applied Mathematics, Seattle, 98195, WA, USA
bLevel Ventures, New York, NY, USA
cPacific Northwest National Laboratory, 1100 Dexter Ave N, Suite 500, Seattle 98109, WA, USA
dDepartment of Electrical and Computer Engineering, Seattle 98195, WA, USA

ABSTRACT

Spatiotemporal data is increasingly available due to emerging sensor and data acquisition technologies
that track moving objects. Spatiotemporal clustering addresses the need to e�ciently discover patterns
and trends in moving object behavior without human supervision. One application of interest is the
discovery of moving clusters, where clusters have a static identity, but their location and content can
change over time. We propose a two phase spatiotemporal clustering method called spatiotemporal
k-means (STkM) that is able to analyze the multi-scale relationships within spatiotemporal data. By
optimizing an objective function that is unified over space and time, the method can track dynamic
clusters at both short and long timescales with minimal parameter tuning and no post-processing. We
begin by proposing a theoretical generating model for spatiotemporal data and prove the e�cacy of
STkM in this setting. We then evaluate STkM on a recently developed collective animal behavior
benchmark dataset and show that STkM outperforms baseline methods in the low-data limit, which is
a critical regime of consideration in many emerging applications. Finally, we showcase how STkM
can be extended to more complex machine learning tasks, particularly unsupervised region of interest
detection and tracking in videos.

© 2024 Elsevier Ltd. All rights reserved.

1. Introduction

The widespread use of sensor and data acquisition technolo-
gies, including IOT, GPS, RFID, LIDAR, satellite, and cellu-
lar networks allows for, among other applications, the contin-
uous monitoring of the positions of moving objects of interest.
These technologies create rich spatiotemporal data that is found
across many scientific and real-world domains including eco-
logical studies of collective animal behavior, the surveillance of
large groups of people for suspicious activity, and tra�c man-
agement (Kalnis et al., 2005; Vieira et al., 2009; Jeung et al.,
2008). Often, the data collected is large and unlabeled, moti-
vating the development of unsupervised learning methods that
can e�ciently extract information about object behavior with
no human supervision.

Clustering is one of the primary goals of unsupervised learning.
As such, it has become a critical data mining tool for gaining
insight from unlabeled data by grouping objects based on some

⇤⇤Corresponding author:
e-mail: OlgaD400@uw.edu (Olga Dorabiala)

similarity measure (Bishop & Nasrabadi, 2006; James et al.,
2013). Spatial clustering refers to the analysis of static data
with features that describe spatial location, while spatiotempo-
ral clustering adds time as a feature, and algorithms have to
consider both the spatial and the temporal neighbors of objects
in order to extract useful knowledge (Birant & Kut, 2007).
There are a handful of spatiotemporal clustering classes, some
of which track events or object trajectories, but our focus is
on moving clusters, where clusters have a static identity, but
their location and content can change over time. The moving
cluster problem is especially useful in applications where it is
essential to know whether individuals form loose and tempo-
rary associations or stable, long-term ones. Applications such
as surveillance, transportation, environmental and seismology
studies, and mobile data analysis can be considered within this
mathematical framework (Ansari et al., 2020).

The mathematical formulation for the moving cluster problem
is significantly more challenging than for stationary clustering.
Most approaches first cluster in space and then aggregate the
results over time, as opposed to minimizing a unified objec-
tive function. It has been shown that this post-processing ap-

2

proach can lead to erroneous results (Chen et al., 2015). Fur-
ther, the most popular approaches are built upon density-based
clustering methods, which are sensitive to hyperparameter tun-
ing and do not explicitly track cluster centers (Bhattacharjee
& Mitra, 2021). Finally, while some existing methods operate
well on large data, tracking objects over thousands of time steps
or more, they exhibit poor performance in the low-data limit,
when dynamics are being inferred from either a small number
of individuals or over very short windows of time.

We propose a two phase spatiotemporal, unsupervised cluster-
ing method, spatiotemporal k-means (STkM), for the moving
cluster problem that addresses the aforementioned shortcom-
ings. Phase 1 identifies the loose associations between objects
by outputting an assignment for each point at every time step,
with the flexibility for points to change clusters between time
steps. The clustering objective function provides a unified for-
mulation over space and time and less hyperparameter tuning
compared to existing methods. It also provides the function-
ality to directly track cluster paths without post-processing, al-
lowing STkM is to identify long-term point behavior, even in
a dynamic environment. Phase 2 can be optionally applied to
the cluster assignment histories from Phase 1 to output stable,
long-term associations. In fact, Phase 2 can be applied to any
method that outputs an assignment for each point at every time
step. The combination of Phase 1 and Phase 2 allows us to an-
alyze the multi-scale relationships within spatiotemporal data.
We introduce STkM, theoretically demonstrate the e�cacy of
the algorithm, evaluate its performance against existing meth-
ods on the moving cluster problem, and highlight the use of
STkM for more sophisticated machine learning applications.

2. Related Work

Spatiotemporal data generally record an object state, an event,
or a position in space, over a period of time. Spatiotempo-
ral clustering can be divided into six classes: event cluster-
ing, geo-referenced data item clustering, geo-referenced time-
series clustering, trajectory clustering, semantic-based trajec-
tory data-mining, and moving clusters (Ansari et al., 2020).
Some of the most prominent algorithms, such as ST-DBSCAN
and ST-OPTICS belong to the second classification (Birant &
Kut, 2007; Agrawal et al., 2016). Unfortunately, they require
four and six input parameters, respectively, heavily influenc-
ing the quality of clusters, and they do not provide meaningful
cluster centers for analysis. The hyper-parameter tuning of the
ten aforementioned parameters becomes critically important for
achieving reasonable performance.

The algorithms in this paper are concerned with the final clas-
sification scheme: moving clusters. A moving object is de-
fined by a set of sequences hid, x, ti, where the variable id is
the unique identifier for each point, t is time, and x is a vec-
tor whose components contain the spatial attributes, i.e. the x
and y coordinates (Ansari et al., 2020). Moving clusters have
identities (separate from id above) that do not change over time,
although their positions and content may change. The prototyp-
ical example is a herd of animals, where individual animals can
enter or leave the herd at any given time.

Most approaches to the moving cluster problem first cluster in
space and then aggregate the results over time. Kalnis et. al
proposed running DBSCAN at every time step and defined a
moving cluster criteria to associate clusters in successive time
steps (Kalnis et al., 2005). This approach was later extended to
the discovery of convoys consisting of at least some points that
exist near one another for a minimum number of consecutive
time steps (Jeung et al., 2008). Other work identified flocks of
objects that stay together for a given window of time (Vieira
et al., 2009). The commonality between these approaches was
a requirement for moving clusters to exist in some fixed number
of consecutive time steps. In practice, points can split apart and
come back together, motivating the proposal of swarms, where
a minimum number of objects travel together for at least some
proportion of time steps (Li et al., 2010). Contrastingly, Chen
et. al proposed an extension of DBSCAN that incorporates a
novel spatiotemporal distance function, where points’ distances
are their spatial distances from one another if they are tempo-
ral neighbors and zero otherwise (Chen et al., 2015). Their
four step process performs even in the presence of noise and
missing data, but, like ST-DBSCAN, requires extensive hyper-
parameter tuning.

Though substantial work has been done to develop various
spatiotemporal clustering techniques, the performance of these
methods is rarely compared against one another and imple-
mentations are not open source. Recognizing that there was
no unified and commonly used experimental dataset and proto-
col, Cakmak et. al proposed a benchmark for detecting moving
clusters in collective animal behavior (Cakmak et al., 2021).
They generate realistic synthetic data with ground truth, and
present state-of-the-art baseline methods. Their implemented
algorithms extend spatial clustering methods by first assess-
ing whether a data point is density reachable from another data
point with respect to both space and time and then employing a
splitting and merging process (Peca et al., 2012). Additionally,
STkM (based on a pre-print of this paper) has been extended to
the more abstract metric case involving graphs (Dabke & Dora-
biala, 2023b,a, 2024).

3. Spatiotemporal k-means

Drawing inspiration from approaches that define unique spa-
tiotemporal distance metrics, we propose a clustering objective
function that provides a unified formulation over space and time
and predicts cluster membership for each point at every time
step (Izakian et al., 2012; Chen et al., 2015). We build upon the
k-means algorithm, so that cluster centers are explicitly tracked
and there are fewer parameters to tune. In a single pass of
Phase 1, without post-processing, point membership and dy-
namic cluster center paths are output. We provide an optional
secondary phase that can extract stable, long-term clusters.

3.1. Phase 1: Loose, Temporary Associations
The first phase of our method captures loose associations, with
points having the flexibility to change clusters. We propose a
temporal extension of the k-means objective function. We fo-
cus on k-means, because of its simplicity, speed, and scalablity.

3

Also, unlike density-based methods, k-means explicitly iden-
tifies cluster centers, giving us the ability to directly track the
movement of our k clusters. The objective is shown in (1).

min
C,W

NX

i=1

kX

j=1

TX

t=1

wt, j,i||xt,i�ct, j||2+�||ct, j�ct+1, j||2 where Wt,:,i 2 �1

(1)

The matrix X 2 RT⇥m⇥N contains N data points and the ma-
trix C 2 RT⇥m⇥k contains k cluster centers, both of spatial
dimension m being tracked over T time steps. The matrix
W 2 RT⇥k⇥N contains auxiliary weights that map the assign-
ment of points to clusters over time. Instead of restricting the
entries of W to the discrete set {0, 1}, we allow them to vary
over the closed interval [0, 1]. This relaxation is used by fuzzy
versions of k-means and gives the user a way to quantify the
extent of each point’s membership to a cluster (Nayak et al.,
2015) . The second term in (1) associates cluster centers be-
tween time frames automatically, as opposed to through post
processing, as in (Kalnis et al., 2005; Jeung et al., 2008; Vieira
et al., 2009; Peca et al., 2012; Cakmak et al., 2021). Cluster
centers maintain their identity because they are penalized for
moving apart, where the parameter � 2 [0, 1] controls the ex-
tent of the penalty. Objective (1) requires all points to exist at
every time step. To ensure this criteria is satisfied, data can be
divided into time intervals, missing spatial information in an in-
terval can be augmented using interpolation, and intervals with
multiple spatial coordinates can be reduced through averaging.

Problem (1) can be solved using alternating minimization. The
centers are updated using the Gauss-Seidel step in (2), and
unlike fuzzy versions of k-means, which update the weights
with an explicit formula based on points’ distances from clus-
ter centers, we use Proximal Alternating Minimization (PAM),
as shown in (3) (Nayak et al., 2015). PAM gives us control
over how quickly weights are updated and can be thought of
as a proximal regularization of the Guass-Seidel scheme (At-
touch et al., 2010). PAM is guaranteed to converge as long as
dk > 1.0. In practice, we set dk = 1.1.

ck+1
t, j =

Pn
i=1 wt, j,ixt,i + n�ct+1, jPn

i=1(wt, j,i + �)
(2)

wk+1
t, j,i = pro j�1

✓
wt, j,i �

1
dk
||xt,i � ct, j||2

◆
(3)

Since both point membership and clusters are tracked through-
out the clustering process we can directly visualize the paths
of dynamic clusters, a feature that without post-processing is
unavailable with any existing method. The top row of Figure 1
displays ground truth versus predicted cluster paths using Phase
1 of STkM on a synthetic dataset containing three long-term
moving clusters. Though cluster paths are not identified per-
fectly because we do dynamic prediction on clusters with static
membership, STkM is still able to pick up the general trends of
cluster movement. Even in a dynamic environment, we do not
completely lose information about long-term cluster behavior.

Fig. 1. True static versus predicted cluster paths from Phase 1 and Phase 2
of STKM . After Phase 1, STkM identifies general trends of cluster move-
ment, even when allowing points to switch clusters over time. In Phase 2,
STKM correctly identifies the true static cluster paths.

3.2. Phase 2: Stable, Long-term Associations

Phase 2 of STKM identifies the long-lived associations between
data points, and the output is a single assignment of static clus-
ters containing points that have the most similar spatiotemporal
characteristics. Because Phase 2 uses dynamic clusters to in-
form decisions about long-term behavior, the clusters predicted
by Phase 2 are more accurate than methods that directly find
static clusters. To run Phase 2 on the output of Phase 1, we first
need to extract cluster assignment histories, which we define as
the arg max over the rows of W, so that the vector ar 2 RT con-
tains the assignment of point r at each time t. We use Hamming
distance, denoted as H(ar, as), to quantify the extent of di↵er-
ence between two vectors ar, as. Then the similarity can be
defined as sim(ar, as) = 1 � H(ar ,as)

T . We can create a similarity
matrix A, where Ar,s contains the similarity between the cluster
assignment histories of points r and s, and run agglomerative
clustering on A to output k long-term clusters.

Row two of Figure 1, compares the predicted versus ground
truth long-term cluster paths of the moving objects from the
previous section, and we observe that Phase 2 identifies the
paths perfectly. We can also combine results from Phase 1 and
Phase 2 to gain insights about the multi-scale behavior of mov-
ing objects e.g. which long-term clusters are most stable, which
points switch clusters most often, etc.

4. Theoretical Analysis

4.1. Overview

We define the correlated random walk model: given a collec-
tion of particles with each particle belonging to a unique cluster,
the particles are performing random walks that are correlated
within a cluster and uncorrelated without. We would like to an-
alyze how STkM performs on this system. While cluster mem-
bership may rightfully change over time in spatiotemporal data,
we make the assumption that each particle fits into a unique
“correct” cluster in order to illustrate the utility of STkM.

4

4.2. Definitions

Let T 2 N be end time for our simulation and k be the total
number of clusters; each cluster has ni particles (where ni � 1)
and the total number of particles is n , n1 + · · · + nk, so n � k.

Let Xt
i represent the position of particle i 2 [n] at time t 2

{0} [[T] where1, by construction, Xt
i 2 Rd. All elements in

cluster 1 are indexed {1, . . . , n1}, those in cluster 2 are indexed
{n1 + 1, . . . , n1 + n2}, and so on; a : [n] ! [k] maps indices to
their clusters (see Section Appendix A.2 for details).

We further construct our displacements Yt
i . Let Wt

i ,Z
t
j

iid⇠
N(0, Id) where2 i 2 [n], j 2 [k]. We can thus write Yt

i ,
pq ·Wt

i +
pp ·Zt

a(i) where q , 1� p. These displacements form a
set of standard normal vectors that are independent across dif-
ferent timesteps and di↵erent clusters, but have correlation p
within a cluster at the same time. Equivalently, Yt

i ⇠ N (0, Id)
with the condition Cor

⇣
Y s

i ,Y
t
j

⌘
= p if a(i) = a(j), s = t and 0

otherwise. Proposition Appendix A.1 shows equivalence.

Remark (Correlation is Covariance). Since the variance of
each Y s

i is 1, we know that Cor
⇣
Y s

i ,Y
t
j

⌘
= Cov

⇣
Y s

i ,Y
t
j

⌘

4.3. System Dynamics

To define the dynamics of this system, we let

Xt
i ,
8>><
>>:

0 t = 0
Xt�1

i + Yt�1
i t > 0

(4)

4.4. Key Results

First, STkM works correctly over time in this context. In par-
ticular, points in the same cluster are more likely to be closer
together and STkM exactly optimizes for this case. We intro-
duce Theorem 4.1 to explain this behavior.

Theorem 4.1. In expectation, intracluster distances are
smaller than intercluster distances.

Proof. Following directly from Lemma Appendix A.3, ob-
serve that the correlation between two points in a cluster is
strictly less than the correlation between two points in di↵er-
ent clusters.

Next, we establish a bound on closeness within a cluster. The-
orem 4.2 bounds the total distance that a set of points within a
cluster can drift. If a center is chosen within a cluster, then this
theorem applies directly where q is simply3 1 � p.

Theorem 4.2. For ✏ > 0, the probability that all particles in a
cluster are within distance D of a chosen particle is at least 1�✏
when D = 1

✏ · c · ni
p

tq. The constant c depends on the ambient
dimension, and ni is the number of particles in the cluster.

1The notation [c] represents the set {1, . . . , c} ⇢ N
20 is the 0 element (origin) of Rd , Id is the d ⇥ d identity matrix
3if the point is not within the cluster, then q = 1 because p = 0.

Proof. By Lemma Appendix A.3, the expected distance of a
particle from any particle is c · ptq, where c is a constant that
depends on the ambient dimension4. By Markov’s inequality5,
the probability that this distance is greater than D is 1

D · c ·
p

tq.
By the Union Bound, the probability ↵ that at least one particle
is more than distance D away from a cluster center is at most
ni · 1

D · c ·
p

tq. Let D = ni · 1
✏ · c ·

p
tq, where ✏ > 0. By

substitution, we see that ↵  ✏. Finally, we note that by the law
of total probability, the probability that no particles are more
than distance D away from any point is simply 1 � ✏.

5. Experiments

5.1. Methodology

To experimentally validate the performance of STGkM, we
use the benchmark dataset proposed by Cakmak et. al (Cak-
mak et al., 2021). Their benchmark is based on three collec-
tive animal behavior models and contains 3, 600 spatiotemporal
datasets of sizes ranging from 600 up to 520, 000, where size is
calculated as T ⇥ n. The datasets track static clusters, where
points do not change cluster membership over time. During our
evaluation, we focus on the datasets that have size between 800
and 35, 000, of which there are 1, 034. We do so, because we
are particularly interested in performance in the low-data do-
main, where either we have few objects or few time steps from
which to infer behavior.

Cakmak et. al measure clustering quality with adjusted mu-
tual information (AMI) score and report execution time for a
handful of baseline methods. The methods all output dynamic
clusters, but AMI compares the dynamic cluster assignments
against a static ground truth. To avoid this mismatch, we com-
pare the ground truth against stable clusters derived from the
full assignment histories. To this end, we use Phase 2 of STkM
to extract long-term clusters, not only from Phase 1’s output,
but also from the baseline methods. Then we report what we
refer to as long-term AMI, which compares the predicted ver-
sus ground truth static clusters. We divide our data into groups
based on size (e.g. 800-3000, 3000-6000, etc.) and report re-
sults as the median and average of long-term AMI for each
range of sizes. We note that in (Cakmak et al., 2021), dur-
ing the cluster merging process, points that cannot be assigned
to a cluster are given the same label, resulting in an erroneous
association of unassigned points as a single cluster during the
calculation of AMI. In order to avoid this interpretation, we give
them all given unique labels during evaluation.

5.2. Parameter Selection

All of the baseline methods have at least four parameters that
need to be defined: frame size, frame overlap, ✏1, and ✏2. These
correspond to the number of time steps that belong to a single

4This lemma applies here because we have selected a cluster, which all
have the same correlation with a point, whether or not it is in the cluster.

5Markov’s Inequality applies because the distance is non-negative and its
expectation is well-defined.

5

frame, the number of time steps that frames overlap when as-
sociating clusters between frames, and the spatial and temporal
distances that define whether a point is density reachable from
the current one. All of the methods except for ST-DBSCAN
also take as input the true number of clusters k. In their ex-
periments, Cakmak et. al arbitrarily fix frame size to be 100
and frame overlap to be 10. All of the methods use the default
value ✏1 = 0.50, except for ST-DBSCAN, which searches for
✏1 2 [0.01, 0.05]. Grid search is used to find the optimal re-
maining parameters that achieve the highest accuracy measure
against the ground truth (Cakmak et al., 2021). In an unsuper-
vised setting, one cannot tune parameters to maximize accuracy
based on a ground truth. We argue that the performance of the
baseline methods in Cakmak et. al is therefore unrealistic and
avoid parameter tuning in our experiments.

In contrast, Phase 1 of our method requires only two parame-
ters: �, which controls the extent of the penalty that indirectly
discourages points from switching clusters, and k, the true num-
ber of clusters. The parameter � is confined to the range [0, 1],
and the meaning of its value is intuitive. We seek to create a
similar, intuitive interpretation of the baseline methods’ ✏2, the
temporal distance a point is density reachable from the current
one. We define ✏2 = ↵t, where t is the total number of time
steps in the data and ↵ 2 [0, 1] is some given proportion. This
formulation gives us a principled approach to choosing ✏2, as
opposed to choosing a unique value for each dataset.

Because we know that the ground truth clusters do not allow
points to switch clusters, we set both � and ↵ fairly high.
We run all of the methods on each set of data with �,↵ =
[0.60, 0.80, 1.00]. For the baseline methods, we fix the remain-
ing parameters as follows: frame size = 100, frame overlap
= 10, ✏1 = 0.50 for all of the methods, except for ST-DBSCAN
where ✏ = 0.05, and k is set to the true number of clusters. Any
other parameters in the baseline methods are set to their default
values. Since we run each method three times using di↵erent
parameters on each dataset, we obtain metrics for 3,102 runs of
each method. We then report the aggregate of long-term AMI
for each method on every range of dataset sizes.

5.3. Results
Figure 2 displays the performance of all baseline methods on
the benchmark data in terms of long-term AMI. STkM, ST-
Agglomerative, ST-KMeans, and ST-BIRCH score almost iden-
tically in terms of their median scores, but STkM maintains
the highest averages over all datasets. As expected, as dataset
size increases, more information can be extracted either due to
more time steps or more point interactions, and the accuracy
of the top methods increases. It is only in datasets under size
10, 000 that we observe median scores noticeably smaller than
1.0. Across almost all sizes, the boxplots for STkM in Figure 2
have the tightest interquartile ranges, the shortest tails, and the
most condensed outliers, demonstrating that STkM has the low-
est variability and most consistent performance. This result im-
plies that the short-term relationships detected by STkM are the
most informative in identifying long-lived point relationships.

Figure 3 provides a closeup of average and median long-term

Fig. 2. Boxplots of long-term AMI scores for various methods over di↵er-
ent dataset sizes. Median scores are shown in orange and average scores in
blue. Boxplots for STkM have the top median and average scores, smallest
interquartile ranges, shortest tails, and least dispersed outliers, demon-
strating that STkM’s performance is the best and most consistent.

(a)

(b)

Fig. 3. (a) Average long-term AMI trendlines. (b) Median long-term AMI
trendlines. The top methods perform almost identically in terms of median
scores, but STkM achieves the highest average long-term AMIs on datasets
of all sizes. All methods that use short-term information to inform long-
term predictions perform better than Baseline ST-DBSCAN.

AMI trendlines, and also includes the results of baseline ST-
DBSCAN, which is a popular spatiotemporal clustering method
that produces solely static cluster assignments. The remaining
methods, which utilize Phase 2 of STkM to generate static clus-
ter assignments, outperform baseline ST-DBSCAN, suggesting
that a two phase approach that uses short-term behavior to in-
form long-term relationships, captures moving object behavior
more accurately. Overall, STkM achieves the highest long-term
AMI on 70% of datasets. Table 1 shows the long-term AMI
scores for each of the tested methods averaged over all 3,102
runs, and we observe that STkM achieves the highest score. Al-
though STkM demonstrably outputs more informative moving
cluster labels and more accurate long-term cluster labels, the
trade-o↵ is it’s runtime. STkM runs slowest and scales worst
out of all methods tested, as seen in Figure 4. An improvement
could come from decreasing the number of iterations in STkM.

6

Table 1. Average Long-term AMIs for all methods over all datasets.
STkM ST-Agglomerative ST-DBSCAN ST-KMeans ST-BIRCH ST-HDBSCAN

Average Long-term AMI .90 .86 .42 .87 .87 .57

Fig. 4. Average runtime versus dataset size. STkM scales poorest in terms
of runtime, compared to other methods.

5.4. Machine Learning

Thus far, we have shown STkM’s ability to cluster moving ob-
jects of the simplest kind: points traveling in two dimensions.
However, moving objects can be much more complex; they can
be any evolving, high-dimensional feature vectors. Since STkM
sets the benchmark in the two dimensional case, we seek to ap-
ply it to more interesting machine learning applications, such
as region of interest (ROI) detection and tracking in videos.

Variants of k-means have successfully been applied in the con-
text of image segmentation in literature dating all the way back
to the 1980s (Coleman & Andrews, 1979; Pappas & Jayant,
1989). Over the years, approaches have become more sophis-
ticated, experimenting with pre- and post-processing, ensem-
bling, and the integration of clustering objectives into the func-
tions being optimized by neural networks (Dhanachandra et al.,
2015; Ji et al., 2019; Kim et al., 2020). Extracting ROIs in
videos is much more challenging. Most methods use deep
learning to extract ROIs on a frame-by-frame basis and aggre-
gate them over time, as in (Wu et al., 2019). However, the
aggregation is done over consecutive or short time windows,
thereby failing to capture a global perspective (Lu et al., 2019).
This is where we believe STGkM could be of value.

One approach for region of interest tracking in videos, would
be to directly apply STkM to the pixels in a video, where each
pixel has a feature vector that captures evolving RGB channels.
Unfortunately, STkM will not scale well to hundreds of thou-
sands of points, and three features may not be discriminative
enough to generate meaningful clusters. Our approach is to in-
stead use a pre-trained CNN on each video frame to generate
“super-pixels” that summarize the important features in each
grid box, simultaneously enriching the feature space and dimin-
ishing dataset size. The process is described formally below.

5.4.1. Lifting an image model to video
For a given w, length l, and number of channels d, the space
of images is Rw⇥l⇥d. In this setting, we will assume that we
have an oracle neural network that maps images to some latent
space. In particular, given latent dimension n, we will assume
the existence of a neural network N such that N : Rw⇥l⇥d !
Rw⇥l⇥n. Given a movie (xt)t2[T] where xt 2 Rw⇥l⇥d,T 2 N, we

Original
Video

k = 2

k = 3

k = 4

t = 0 t = 14 t = 28

Fig. 5. Output of our region of interest detection pipeline on a video
of swimming fish using varied values of k in STkM. We achieve back-
ground/foreground separation with k = 2, separate the fish and the water
when k = 3, and cluster coral, water, and fish seperately when k = 4.

can construct a set of spatiotemporal points. Namely, pt
i 2 Rn

such that pt
i , N

�
xt�
�(i), where � is a bijection for re-indexing

such that � : [w · l]! [w]⇥ [l], e.g., i 7! (di/we, i mod l). With
this set of points, we use STkM to cluster the movie pixels.

Figure 5 shows the output of our proposed pipeline on a video
of swimming fish. We run each frame of the video through a
pre-trained ResNet 50, with the final layer removed. The out-
put is a 7x7 grid of “super-pixels” that capture the important
features in each grid box. We flatten the grids and run Phase 1
of STkM on the resulting vectors. When k = 2, we achieve fore-
ground/background separation, assigning the fish and the back-
ground to di↵erent clusters. When k = 3, the individual fish are
separated from each other and the background. When k = 4,
the clusters correspond to coral, open water, and individual fish.
The cluster bounding boxes are not precise; particularly when
k = 3 and k = 4, small parts of the fish are separated into dif-
ferent clusters. It may be worth experimenting with di↵erent
CNN backbones or “super-pixel” granularity, but we leave a
principled study and evaluation of STkM for region of interest
detection for future work. For now, we emphasize the potential
of STkM to be used for this task with no specialized transfer
learning, labeled data, or training time.

6. Conclusion

We demonstrate that STkM, an unsupuervised two phase spa-
tiotemporal clustering method, is able to capture the multi-scale
behavior of moving object data. Phase 1 returns an assignment

7

for each point at every iteration, and provides us the unique abil-
ity to directly track cluster centers without any post-processing.
This phase minimizes an objective function, that unlike exist-
ing methods, is unified in both space and time and requires
many fewer parameters to run. Phase 2 can be optionally ap-
plied to classify each point into a single long-term cluster. Be-
cause Phase 2 infers long-term relationships from short-term
ones, Phase 2 results in more accurate static clusters compared
to methods that provide exclusively static clusters. The combi-
nation of both phases allows us to draw conclusions about the
relationships between both points and clusters.

We demonstrate the competitiveness of STkM against existing
spatiotemporal clustering methods on a benchmark dataset pro-
posed by Cakmak et. al (Cakmak et al., 2021). All algorithms
output dynamic clusters, so we use Phase 2 of STkM to trans-
late them into static clusters for comparison against the ground
truth. We show that STkM performs best and most consis-
tently in terms of average and median long-term AMI over all
datasets, suggesting that the short-term relationships predicted
by STkM are more informative than those of the baseline meth-
ods. The tradeo↵ in using STkM is a slower runtime.

Overall, STkM demonstrably outperforms existing methods on
the moving cluster problem. As such, we explore how STkM
can be used for more complex machine learning applications
and provide evidence that it has the potential to be used as part
of an ensemble for region of interest detection in videos. In the
future, we intend to explore robust extensions of STkM for han-
dling noise, approaches to estimating the number of clusters k,
and further study applications of STkM for computer vision and
other more complex machine learning tasks. In a parallel line
of work, we have already extended STkM to the more abstract
metric case involving graphs (Dabke & Dorabiala, 2023b,a,
2024). With ever increasing information from broad applica-
tions such as surveillance, transportation, environmental stud-
ies, and mobile data analysis, STkM and other related methods
are critical for the unsupervised analysis of spatiotemporal data
streams.

Acknowledgements

OD and JNK acknowledge support from the National Science
Foundation AI Institute in Dynamic Systems
(grant number: 2112085)

DD would like to thank Albert Azout and acknowledge support
from Level Ventures.

References
Agrawal, K., Garg, S., Sharma, S., & Patel, P. (2016). Development and val-

idation of optics based spatio-temporal clustering technique. Information
Sciences, 369, 388–401.

Ansari, M. Y., Ahmad, A., Khan, S. S., Bhushan, G. et al. (2020). Spatiotem-
poral clustering: a review. Artificial Intelligence Review, 53, 2381–2423.

Attouch, H., Bolte, J., Redont, P., & Soubeyran, A. (2010). Proximal alter-
nating minimization and projection methods for nonconvex problems: An
approach based on the kurdyka-łojasiewicz inequality. Mathematics of op-
erations research, 35, 438–457.

Bhattacharjee, P., & Mitra, P. (2021). A survey of density based clustering
algorithms. Frontiers of Computer Science, 15, 1–27.

Birant, D., & Kut, A. (2007). St-dbscan: An algorithm for clustering spatial–
temporal data. Data & knowledge engineering, 60, 208–221.

Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine
learning volume 4. Springer.

Cakmak, E., Plank, M., Calovi, D. S., Jordan, A., & Keim, D. (2021). Spatio-
temporal clustering benchmark for collective animal behavior. In Proceed-
ings of the 1st ACM SIGSPATIAL International Workshop on Animal Move-
ment Ecology and Human Mobility (pp. 5–8).

Chen, X., Faghmous, J. H., Khandelwal, A., & Kumar, V. (2015). Clustering
dynamic spatio-temporal patterns in the presence of noise and missing data.
In Twenty-Fourth International Joint Conference on Artificial Intelligence.

Coleman, G. B., & Andrews, H. C. (1979). Image segmentation by clustering.
Proceedings of the IEEE, 67, 773–785.

Dabke, D. V., & Dorabiala, O. (2023a). A novel method for vertex clustering
in dynamic networks. In Complex Networks & Their Applications XII (pp.
445–456). Springer. doi:10.1007/978-3-031-53499-7_36.

Dabke, D. V., & Dorabiala, O. (2023b). Spatiotemporal graph k-means. In
Proceedings of the Communities in Networks ComNets @ NetSci 2023.

Dabke, D. V., & Dorabiala, O. (2024). Vertex clustering in diverse dynamic
networks. Pre-print, under review.

Dhanachandra, N., Manglem, K., & Chanu, Y. J. (2015). Image segmentation
using k-means clustering algorithm and subtractive clustering algorithm.
Procedia Computer Science, 54, 764–771.

Izakian, H., Pedrycz, W., & Jamal, I. (2012). Clustering spatiotemporal data:
An augmented fuzzy c-means. IEEE transactions on fuzzy systems, 21, 855–
868.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to
statistical learning volume 112. Springer.

Jeung, H., Shen, H. T., & Zhou, X. (2008). Convoy queries in spatio-temporal
databases. In 2008 IEEE 24th International Conference on Data Engineer-
ing (pp. 1457–1459). IEEE.

Ji, X., Henriques, J. F., & Vedaldi, A. (2019). Invariant information cluster-
ing for unsupervised image classification and segmentation. In Proceedings
of the IEEE/CVF international conference on computer vision (pp. 9865–
9874).

Kalnis, P., Mamoulis, N., & Bakiras, S. (2005). On discovering moving clusters
in spatio-temporal data. In International symposium on spatial and temporal
databases (pp. 364–381). Springer.

Kim, W., Kanezaki, A., & Tanaka, M. (2020). Unsupervised learning of image
segmentation based on di↵erentiable feature clustering. IEEE Transactions
on Image Processing, 29, 8055–8068.

Li, Z., Ding, B., Han, J., & Kays, R. (2010). Swarm: Mining relaxed temporal
moving object clusters. Technical Report ILLINOIS UNIV AT URBANA-
CHAMPAIGN DEPT OF COMPUTER SCIENCE.

Lu, X., Wang, W., Ma, C., Shen, J., Shao, L., & Porikli, F. (2019). See more,
know more: Unsupervised video object segmentation with co-attention
siamese networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (pp. 3623–3632).

Nayak, J., Naik, B., & Behera, H. (2015). Fuzzy c-means (fcm) clustering
algorithm: a decade review from 2000 to 2014. Computational intelligence
in data mining-volume 2, (pp. 133–149).

Pappas, T. N., & Jayant, N. S. (1989). An adaptive clustering algorithm for
image segmentation. In International Conference on Acoustics, Speech, and
Signal Processing, (pp. 1667–1670). IEEE.

Peca, I., Fuchs, G., Vrotsou, K., Andrienko, N. V., & Andrienko, G. L. (2012).
Scalable cluster analysis of spatial events. EuroVA@ EuroVis, 6, 19–23.

Vieira, M. R., Bakalov, P., & Tsotras, V. J. (2009). On-line discovery of flock
patterns in spatio-temporal data. In Proceedings of the 17th ACM SIGSPA-
TIAL international conference on advances in geographic information sys-
tems (pp. 286–295).

Wu, H., Chen, Y., Wang, N., & Zhang, Z. (2019). Sequence level semantics
aggregation for video object detection. In Proceedings of the IEEE/CVF
international conference on computer vision (pp. 9217–9225).

Appendix A. Supplementary Material

Appendix A.1. Code
Code can be found at:
https://github.com/OlgaD400/STKM

8

Appendix A.2. Indexing Function
We can assume that we have a surjective assignment function
a : [n] ! [k] that assigns each particle to a cluster. Therefore,
our assignment function takes the form

a(i) , min

8>>><
>>>:

k0
���� i �

k0X

j=1

n j

9>>>=
>>>;

For intuition, note that we are asking for the first cluster such
that the total number of points within clusters “so far” do not
exceed a given input index i.

Appendix A.3. Intermediate Results and Proofs
We use the following notation:

• [c] represents the set {1, . . . , c} ⇢ N

• 0 is the 0 element (origin) of Rd

• Id is the d ⇥ d identity matrix

Proposition Appendix A.1. Let Wt
i ,Z

t
j

iid⇠ N(0, Id) where i 2
[n], j 2 [k]. Then, Yt

i =
pq ·Wt

i +
pp · Zt

a(i) where q , 1 � p if
and only if Yt

i ⇠ N (0, Id) with the condition Cor
⇣
Y s

i ,Y
t
j

⌘
= p if

a(i) = a(j), s = t and 0 otherwise.

Proof. Assume Yt
i =
pq ·Wt

i +
pp · Zt

a(i). The sum of two i.i.d.
normal distributions is also a normal distribution and the mean
and variance of the sum is the sum of the means and variances.
Therefore, Yt

i has mean pq · 0 + pp · 0 = 0; it has variance

Var
h
Yt

i

i
= Var

hp
q ·Wt

i +
p

p · Zt
a(i)

i

= q Var
h
Wt

i

i
+ p Var

h
Zt

a(i)

i

= qId + pId

= Id

Thus, Yt
i ⇠ N (0, Id).

Now, we prove the other direction: by construction, the various
displacements are uncorrelated at di↵erent time steps, so we
just need to verify Cor

⇣
Yt

i ,Y
t
j

⌘
as

Cor
⇣
Yt

i ,Y
t
j

⌘
= Cor

⇣p
q ·Wt

i +
p

p · Zt
a(i),
p

q ·Wt
j +
p

p · Zt
a(j)

⌘

= Cor
⇣p

q ·Wt
i ,
p

q ·Wt
j

⌘

+ Cor
⇣p

q ·Wt
i ,
p

p · Zt
a(j)

⌘

+ Cor
⇣p

p · Zt
a(i),
p

q ·Wt
j

⌘

+ Cor
⇣p

p · Zt
a(i),
p

p · Zt
a(j)

⌘

= 0 + 0 + 0 + Cor
⇣p

p · Zt
a(i),
p

p · Zt
a(j)

⌘

= p Cor
⇣
Zt

a(i),Z
t
a(j)

⌘

= p1a(i)=a(j)

Lemma Appendix A.2 (Sequence Correlation is Maintained).

Cor
⇣
Xt

i , X
t
j

⌘
=

8>><
>>:

p a(i) = a(j)
0 a(i) , a(j)

Proof. With i, j such that a(i) , a(j), Xt
i , X

t
j are sums of i.i.d.

random variables, so their correlation is 0.

If we select i, j such that a(i) = a(j), let us compute

Cov
⇣
Xt

i , X
t
j

⌘
= Cov

0
BBBBBB@

t�1X

r=0

Yr
i ,

t�1X

s=0

Y s
j

1
CCCCCCA

=
X

r,s

Cov
⇣
Yr

i ,Y
s
j

⌘

=
X

r=s

Cov
⇣
Yr

i ,Y
s
j

⌘
+
X

r,s

Cov
⇣
Yr

i ,Y
s
j

⌘

=
X

r=s

p +
X

r,s

0

= t · p

Using the same logic, we can compute

Var
h
Xt

i

i
= Cov

0
BBBBBB@

t�1X

r=0

Yr
i ,

t�1X

s=0

Y s
i

1
CCCCCCA

=
X

r,s

Cov
⇣
Yr

i ,Y
s
i

⌘

=
X

r=s

Cov
⇣
Yr

i ,Y
s
i

⌘
+
X

r,s

Cov
⇣
Yr

i ,Y
s
i

⌘

=
X

r=s

1 +
X

r,s

0

= t

Putting this together, we can compute

Cor
⇣
Xt

i , X
t
j

⌘
=

Cov
⇣
Xt

i , X
t
j

⌘

q
Var
h
Xt

i

i
· Var

h
Xt

j

i

=
t · p
p

t · t
= p

From here, we study what happens to the distance between two
particles over time. In particular, we want to characterize the
distribution of �(i, j, t) where

�(i, j, t) , kXt
i � Xt

jk

From now, we assume k · k is that standard Euclidean distance,
but ideally our results and proofs would not depend on the norm
selected or would at least work for any Lp norm.

Lemma Appendix A.3 (Expectation, Variance of Distance).
Given two particles Xt

i and Xt
j

E ⇥�(i, j, t)
⇤ 2 ⇥

⇣ p
tqd
⌘

(A.1)

Var
⇥
�(i, j, t)

⇤! tq (as d ! 1)

9

In particular, if a(i) , a(j) and thus q = 1, then

E ⇥�(i, j, t)
⇤ 2 ⇥

⇣p
td
⌘

(A.2)

Var
⇥
�(i, j, t)

⇤! t (as d ! 1)

In particular, when d = 2

E ⇥�(i, j, t)
⇤ ⇡ 2.5066 ·

p
tq

Var
⇥
�(i, j, t)

⇤ ⇡ 0.8584 · tq

and when d = 3 then

E ⇥�(i, j, t)
⇤ ⇡ 3.1915 ·

p
tq

Var
⇥
�(i, j, t)

⇤ ⇡ 0.9070 · tq

Proof. Since each component of every Xt is independent, we
will begin by analyzing the random vector component-wise.
We will write Xt

i,l to refer to the lth component of Xt
i and related

quantities, where l 2 [d]. First, note that Xt
i,l � Xt

j,l equals

t�1X

r=0

hp
q ·Wr

i,l +
p

p · Zr
a(i),l �

p
q ·Wr

j,l �
p

p · Zr
a(j,l)

i

In the case that a(i) = a(j), we see that Zt
a(i) = Zt

a(j). In the case
that a(i) , a(j), we can write q = 1, p = 0, so in either case, we
can write

Xt
i,l � Xt

j,l =

t�1X

r=0

hp
q ·Wr

i,l �
p

q ·Wr
j,l

i

=
p

q
t�1X

r=0

h
Wr

i,l �Wr
j,l

i

=
p

2tq
t�1X

r=0

1
p

2t

h
Wr

i,l �Wr
j,l

i

We can observe that

t�1X

r=0

1
p

2t

h
Wr

i,l �Wr
j,l

i
⇠ N(0, 1)

so by letting Zi j,l ,
Pt�1

r=0
1p
2t

h
Wr

i,l �Wr
j,l

i
, we can write Xt

i,l �
Xt

j,l =
p

2tq · Zi j,l and we can now proceed to put everything
together. Namely, note that

���Xt
i � Xt

j

��� =

vut dX

l=1

⇣
Xt

i,l � Xt
j,l

⌘2

=

vut dX

l=1

⇣ p
2tq · Zi j,l

⌘2

=
p

2tq

vut dX

l=1

⇣
Zi j,l
⌘2

which directly implies that

 · kXt
i � Xt

jk ⇠ X(d)

where  = 1/
p

2tq. The expectation of the X distribution is
well-known and implies that

E
h
kXt

i � Xt
jk
i
=
p

2tq · E
h
 · kXt

i � Xt
jk
i

=
p

2tq · µd

where µd !
q

d � 1
2 2 O(

p
d), but for small values of d, we

know that

µd =

8>>>>>>>><
>>>>>>>>:

p
2⇡ 21�d(d�1)!

((d
2�1)!)2 d even

p
2 (d�1

2)!
22�d p⇡(d�2)!

(d�1
2 �1)!

d odd

In particular,

µ2 =

r
⇡

2
⇡ 1.2533

µ3 =

r
8
⇡
⇡ 1.5958

so
p

2 · µ2 ⇡ 2.5066
p

3 · µ3 ⇡ 3.1915

Moreover, we can compute that

Var
h
kXt

i � Xt
jk
i
= 2tq Var

h
 · kXt

i � Xt
jk
i

= 2tq(d � µ2
d)

which approaches tq when d is large, since (d � µ2
d)! 1

2 and in
particular

2(2 � µ2
2) ⇡ 0.8584

2(3 � µ2
3) ⇡ 0.9070

