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Abstract

We present theoretical and experimental results for spatiotemporal graph k-means

(STGkM)—a new unsupervised method to cluster vertices within a dynamic network.

STGkM finds both short-term dynamic clusters and a “long-lived” partition of vertices within

a network whose topology is evolving over time; we first introduced this technique in a recent

conference paper. Here, we update our algorithm with a more efficient relaxation scheme,

provide additional theoretical results, compare its performance to several other methods,

and demonstrate its capabilities on real, diverse datasets. We construct a theoretical foun-

dation to distinguish STGkM from connected components and static clustering and prove

results for the stochastic setting for the first time. In addition to our previous experiments on

the United States House of Representatives dataset, we report new state-of-the-art empiri-

cal results on a dynamic scientific citation network and Reddit dataset. These findings dem-

onstrate that STGkM is accurate, efficient, informative, and operates well in diverse

settings. Finally, as previously noted, one of the main advantages of STGkM is that it has

only one required parameter: k, the number of clusters; we therefore include an extended

analysis of the range of this parameter and guidance on selecting its optimal value. Our data

and code are available on Github; see: https://github.com/dynestic/stgkm.

Author summary

With the explosion of data about the world around us, we must constantly develop new

ways of studying datasets. One popular method for analysis is k-means, which can iden-

tify clusters of related objects based on shared characteristics. Traditionally, k-means

worked over sets of objects (e.g. animal subjects in a biology study) for which it was pos-

sible to define a list of consistent, numerical, and complete “features” or pieces of infor-

mation (like age or weight). Over the years, this algorithm has been adapted for a variety

of datasets and implemented in efficient code libraries. Our paper builds on this vast lit-

erature to extend k-means to the setting of networks that change over time, and we pro-

vide a practical and efficient implementation of it for real-world usage. We show that

our new algorithm works on datasets like the United States House of Representatives

roll call votes, citation networks from major publications, and a sample of Reddit posts.
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We also provide formal mathematical proofs and demonstrate the theoretical soundness

of our technique.

1 Introduction

As we have previously noted [1, 2], dynamic graphs are prevalent mathematical structures that

capture important aspects of the rich and frenetic world around us. Though graphs, or net-

works, have traditionally been studied as static objects, many such systems evolve over time.

Also called “time-varying” or spatiotemporal graphs, they extend static graphs by permitting

edges to change, and they inherently reflect many systems, e.g., road networks, online commu-

nities, and epidemic spread. While we have made strides in understanding them, there are still

many exciting open questions about dynamic graphs, especially when compared to our rela-

tively compendious knowledge about static ones.

Given a dynamic network, we may ask: what is the relationship between vertices over time?
For example, given a social network with evolving friendship, we may want to understand

which people are the most influential, important, or well-connected. Or, in a voting network,

we may want to track the rise of parties and factions over time. These types of problems—find-

ing the emergent dynamic relationships between vertices—is called community detection and

is a form of vertex clustering. Besides the variety of motivating applications, vertex clustering is

a fundamental theoretical problem in the static setting, and so it is natural to extend it to the

dynamic one.

In this paper, we expand upon spatiotemporal graph k-means (STGkM)—a novel technique

that we first introduced as a recent conference paper [1]—which is able to track the multi-scale

relationships between graph vertices. STGkM applies a two-phase clustering approach,

wherein the first phase outputs an assignment for each vertex at every time step and the second

phase produces a single, long-term partition of vertices based on historical cluster member-

ship. STGkM identifies communities of interest and automatically tracks their evolution.

While we had previously provided some theoretical and experimental results when intro-

ducing the technique, the results presented in this paper are entirely novel. Leveraging some

theoretical analysis, we can show when and how our method relates to dynamic connected

components. In some cases, we exactly align with this technique for vertex clustering, but we

also demonstrate where our method finds sensible clusters when connected components is too

strong of a concept. We also demonstrate why dynamic clustering is superior to simple static

clustering in a dynamic network and we provide a basic result demonstrating robustness to

noise. Our empirical results show, first and foremost, that STGkM is applicable to a diverse

range of datasets. It is also efficient and tractable. We also observe many interesting results,

like finding political parties in voting networks and evidence for polarization in online dis-

course: here, we provide mathematical evidence for corresponding results in the social sciences

[3]. Finally, we also provide a comparison to other clustering techniques, including aggrega-

tion methods, using connected components, and heuristic approaches like DCDID [4]. The

main benefits of using STGkM are:

1. It is more granular than connected components.

2. It is more powerful than traditional static or “aggregation”-based clustering.

3. It is robust to noise.
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2 Related work

Much of the literature on dynamic graphs focuses on extending well-known concepts from the

static case like connectivity [5], optimal routing [6], induced dynamical systems [7], and more.

Further work has been done in applying dynamic networks to sports analytics, machine learn-

ing [8], and epidemiological spread [9, 10]. Our work fits into this foundational literature by

extending the notion of vertex clustering. Graph clustering is a fundamental tool for network

analysis, with applications across the social and natural sciences, and we seek to bring this tool

to the dynamic setting. In dynamic graph clustering, we find a partition of graph vertices that

takes into account both spatial similarity—so that there are many edges within a cluster and

relatively few between clusters—and temporal similarity, so clusters stay consistent. These par-

titions help us detect latent community structures.

In static graphs, vertex clustering has a broad literature with interdisciplinary interest and

there has been a push to extend these results to the dynamic setting. Most approaches to

dynamic community detection find clusters independently at each time step and then use

aggregation to successively infer relationships between partitions [11]. These methods are

often unable to achieve temporal smoothness and inevitably do not capture the dynamics of

the network [12]. Another subset of methods first constructs a single coupling graph that sum-

marizes the temporal properties of the dynamic network and then runs a classic community

detection method on this graph [13]. As with aggregation, the use of coupling graphs results in

a loss of temporal information.

Evolutionary clustering addresses this shortcoming through a unified framework, where clus-

ters are iteratively formed based on current network structure and previous partitions. A cost

function regulates the tradeoff between cluster quality at each snapshot and cluster consistency

[14]. This framework has been successfully adopted and refined [15, 16]. Similarly, incremental

methods, identify an initial network structure and use some criterion to successively update

clusters. One such method is DCDID, which uses batch processing to discover interesting parti-

tions [4]. Other lines of research extend static community detection using online algorithms

[17], machine learning [18], or systems-based approximation algorithms [19]. These papers

leverage diverse methods to contend with the sometimes staggering size of dynamic networks.

Our method, STGkM, develops a unified framework akin to, but distinct from, evolutionary

clustering [14]. STGkM, achieves temporal smoothness by restricting the search space of new

cluster centers based on temporal reachability from previous centers. In addition, our method

goes further than existing techniques to also extract long-lived communities of vertices based

on historical dynamic cluster membership. STGkM is the graph analogue to our previously

developed point-based method [20]. We first introduced a notion of STGkM in an extended

abstract with some preliminary evidence of its effectiveness and later as a conference paper,

but we have since refined our approach and this work provides our complete results [1, 2].

Finally, we note that there are numerous methods to group vertices within a dynamic net-

work, each with its own motivation, challenges, and rich literature. Our method of vertex par-

titioning prioritizes long-term stable connections and our main theoretical result highlights

the relationship to the distinct concept of connected components. However, there are many

other interesting notions of connectivity [21] with variants in stochastic settings [22] along

with other related problems, like motif detection [23], centrality measurement [24–27], and

even novel frameworks for capturing properties of dynamic networks [28].

3 Spatiotemporal graph k-means (STGkM)

Our goal is to partition a vertex set given a dynamic graph. In STGkM, we construct a partition

by finding central nodes to represent each cluster and then assigning each remaining vertex
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based on its closest central node. Just as with k-means, we define the problem of finding good

clusters as a minimization problem; our novel objective has a unified formulation over space

and time that predicts a partition for each vertex at every time step. After pre-processing,

STGkM consists of two phases: in a single pass of Phase 1, the algorithm outputs vertex mem-

bership and dynamic cluster center journeys; in Phase 2, we extract the long-lived communi-

ties. We first presented most of this algorithm in [1], but we reproduce it here for

completeness; however, the relaxation scheme in Section 3.3.3 is entirely novel. Also, our

approach is perhaps more analogous to k-medoids, but in a network context, the distinction

between k-means and k-medoids is not clear.

3.1 Setup

As input data, we need:

• An indexed vertex set: V. We assume it is finite, but in principle, SGTkM would exist in the

infinite case; we could not find a practical application and so will not consider that possibility

in this paper.

• A (finite) totally ordered time set: T, usually T � N

• A dynamic graph: G ¼ ðV;EtÞt2T where Et 2 V × V

• (optional) a non-negative real cost function ot : V � V ! R for all t 2 T

Our parameters are k 2 N, the number of clusters, and—optionally—l 2 N, the maximum

cluster center drift, and g 2 Z�0, the drift time window.

3.2 Pre-processing

For all pairs of vertices across time, we compute and store the s-journey δ, see [5] for details.

The value of δt(u, v) is the length of the shortest journey (i.e. dynamic path) starting at vertex u
at time t and ending at vertex v. If no such journey exists, it assigns +1. Thought not a true

metric (it is missing symmetry and coincidence), this function has the same purpose as a dis-

tance in classical k-means. If we have a weight function, we consider this the “cost” of an edge,

i.e., an edge with a smaller weight is a “shorter” edge and a missing edge has essentially “infi-

nite” weight. If no weight functions are provided or if the weight functions only output natural

numbers, then δ will assign only natural numbers. (As a practical matter, we can deploy a tie-

breaking scheme when comparing two distances that are both infinity.) We also define the

related true metric

~dtðu; vÞ≜ dt
ðu; vÞ þ dt

ðv; uÞ

with the additional convention that ~dtðu; uÞ ¼ 0.

3.3 Phase 1

Given a fixed value of k, the first phase of STGkM selects a set of k vertices to serve as cluster

centers and assigns each vertex to a cluster at every time step. Vertices have the flexibility to

switch cluster membership at every time step, but cluster centers are constrained by drift

parameters λ and γ.
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3.3.1 Natural objective. The natural extension of k-means would be to optimize the

objective function in Expression 1:

min
c2C;W2W

X

t2T

X

u2V

X

j2½k�

Wt
u;j �

~dtðu; ct
jÞ ð1Þ

where we minimize the graph distance over cluster centers C and assignment tensors W. For-

mally, C is the set of all sequences of length jTj where each element is an ordered subset of V
with k elements; W≜ f0; 1gjTj�jVj�k

such that
P

j2½k�W
t
u;j � 1. Note that each vertex is assigned

to at least one cluster at every time step.

3.3.2 Objective with regularization. Optimizing Expression 1 is NP-hard (we can reduce

STGk)M to k-medoids, which is NP-hard [29]), so we instead iteratively optimize a modified

objective function that restricts the search space. We begin by choosing initial cluster centers

c0 to be the nodes that are most closely connected to all others at t0. When there are ties, we

sample randomly. At each time t henceforth, we assume that we have chosen optimal cluster

centers cs for all s< t, and we minimize Expression 2.

min
c;W

X

u2V

X

j2½k�

Wt
u;j � d

t
ðu; ct

jÞ

such that dt� q
ðct� 1

j ; ct
jÞ � l;where 1 � q � g and 1 � j � k

ð2Þ

The constraint in Expression 2 imposes that the center of a given cluster can only switch

from vertex u to vertex v if the distance between them is no more than λ for the previous γ
time steps. This regularization serves two purposes: first, it associates dynamic clusters between

time steps; second, it restricts the search space for cluster centers. In the worst case, e.g. when

the graph is complete at every time step, optimizing this objective is still NP-hard, but in prac-

tice, it makes STGkM tractable. As we decrease λ or increase γ, we decrease the number of

potential centers at time t and enforce stricter cluster consistency; see Fig 1 for an example.

3.3.3 Optimizing our objective. We can further make our method more efficient, see Sec-

tion 5.3.1 for empirical performance comparisons. In optimizing Expression 2, observe that at

each time step, each vertex could belong to multiple clusters, since the rows of Wt are not

restricted; we only require the overall tensor to be binary. However, we can further require

that each row of Wt have exactly one non-zero entry; in other words, each vertex can only be

in one cluster. The former approach, as explored in [1], allows us to avoid making strong

assignments and potentially falling into a local minimum, but increases computational com-

plexity. The latter approach is more attractive for the analysis of larger graphs, as it restricts the

search space of potential cluster centers even further. We therefore focus on the latter method

in this paper so that we can explore larger dynamic graph structures.

Our algorithm is an adaptation of FasterPAM with eager swapping, as detailed in [30]. Fas-

terPAM consists of two phases: the BUILD phase, which finds initial cluster centers, and the

SWAP phase, which efficiently seeks iterative improvements for the cluster centers by scanning

over all vertices in the graph. We run the BUILD phase, as implemented in [30], on the first

time slice of our matrix storing s-journeys. For all following time steps, we update the center of a

cluster only if the objective value is improved. To do so, we run eager SWAP phases, where

instead of considering all points as potential swaps for each center, we consider only those points

which are reachable based on the constraint in Expression 2. We greedily update cluster centers,

performing any update that yields some improvement in the loss function. Our algorithm termi-

nates until either the clusters stabilize or we reach a maximum number of iterations.

3.3.4 Algorithmic analysis. The main feasibility issue with STGkM arises from finding

new cluster centers at every time step. Evaluating all possible subsets of size k of |V| is
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NP-hard. The objective in Expression 2 does not obviate this possibility in the worst case, even

though in practice, the added regularization makes it unlikely. In order to further improve run

time, we build upon FasterPAM, as discussed above and take advantage of the fact that Faster-

PAM deploys the strategies of local search and greedy updates. As discussed in [30], the run-

time complexity of a single BUILD phase of FasterPAM is O(k|V|2), and in the worst case,

where every vertex would be reachable from every medoid, the runtime complexity of each

SWAP phase would be O(|V|(|V| − k)). This means that in the worst case, Phase 1 of STGkM

has a runtime complexity of OðjTjjVj2Þ.

3.4 Phase 2

By building on Phase 1, Phase 2 of STGkM aims to identify the long-lived partitions of graph

vertices. The output is an assignment of communities containing vertices with the most similar

spatiotemporal characteristics. Intuitively, we expect vertices with similar partitioning histories

to belong to the same persisting community in the long run.

Recall that the Hamming distance is defined by counting the number of entries where two

matrices disagree: Hðu; vÞ≜ jfðt; kÞ : Wt
u;k 6¼Wt

v;kgj. Using this distance, we define similarity

Fig 1. Cluster center selection process at time t. At time t, the current cluster center ct
0

is chosen based on the previous γ cluster centers ct� q
0 , 1� q� γ.

The drift time window γ determines for how many previous time steps centers must be within maximum drift λ of one another. The objective in

Expression 2 is evaluated for all potential cluster centers; the center that minimizes the objective is chosen.

https://doi.org/10.1371/journal.pcsy.0000023.g001
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sim(u, v) as

simðu; vÞ≜ 1 �
Hðu; vÞ
jTj

ð3Þ

This definition gives us a powerful way to compare all pairs of vertices. Since sim(�, �) is

compatible with traditional clustering techniques, we input it to agglomerative clustering. We

then output the resulting partition to get a clustering of the vertices based on long-lived com-

munities as desired.

3.4.1 Cluster balance. There is no strong requirement that clusters be balanced. Indeed,

our experiments all operate on data with differently sized clusters. We do require that the

graph has the same number of vertices over time, but it’s possible to generate clusters with

very different sizes with STGkM. For balanced clusters, there are two modifications that are

possible: the easiest is to update Phase 2 to require balanced clusters, which is relatively

straightforward with agglomerative or spectral clustering; the other option is to update the

main objective function in Phase 1 with a regularization term that penalizes large differences

in cluster sizes, which is a function of the weight matrix.

In our theoretical results, the first theorem also does not require balanced clusters (indeed,

we do not make such an assumption). For the rest of the theoretical results, we assume balanced

clusters for simplicity: the main purpose of each theorem is to demonstrate the robustness of

STGkM in certain important conditions (like in the stochastic setting). It is possible to general-

ize these results on unbalanced clusters (with additional conditions, e.g., that the smallest cluster

has to have more than k elements), but it adds substantially complexity to the statement of the

result and the corresponding proofs. We therefore only present the results with balanced clus-

ters in this work and leave the generalization to unbalanced clusters to future work.

4 Theoretical results

STGkM has theoretical guarantees that explain its good performance in a variety of practical

situations, namely:

1. Where important, STGkM can recover the well-known concept of dynamic connected

components. (This result was first shown in [1] and we simply restate the main theorem

here.) See: Theorem 4.1.

2. STGkM produces more insightful clusters that dynamic connected components, since they

requires strong assumptions about a system. See: Theorem 4.3.

3. One common approach to clustering in dynamic networks is to flatten a dynamic graph

into a single static one and then perform traditional static clustering. While sometimes

effective, this approach can be catastrophically wrong, but STGkM is immune to these types

of issues. See: Theorem 4.8.

4. Finally, we show that our technique is robust to noise in the stochastic setting. (Admittedly,

this result is relatively simple and we do not provide a sensitivity analysis with respect to

noise.) See: Theorem 4.11.

4.1 Harmony with connected components

Although the clusters that STGkM generates are distinct from connected components, we can

find connected components under certain conditions, as presented in Theorem 4.1; this result,

with more extensive proofs and intermediate results, is simply reproduced from [1] for
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context. Though our method may not be most efficient way to find connected components

(and there are other notions of connected components), our theoretical result provides evi-

dence that STGkM can find interesting partitions.

Definition 4.1 (Dynamic Connected Component). Vertices u, v are (dynamically) con-

nected if there exists a finite journey from u to v and from v to u over all time steps. A set of verti-
ces U (where U⊆ V) is a (dynamic) connected component if all vertices in this set are connected
and there is no vertex in V\U that is connected to a vertex in U.

Theorem 4.1. Given a holding, non-stranding dynamic graph with k connected components,
the partition of vertices induced by the optimal solution to Expression 1 is exactly the connected
components given sufficient time.

Proof. See [1].

This theorem states that—given the correct setting of k—STGkM finds the expected parti-

tion, namely the connected components. It does not give guidance on selecting an appropriate

k. As seen below, with the special case of a single connected component, there are other inter-

esting settings of k that find more intuitive clusters. This theorem demonstrates that if the goal

is to find connected components, it is readibly doable.

4.2 More granularity than connected components

Dynamic connectivity is a relatively strong requirement for two vertices. Indeed, if two vertices

become merely disconnected for just one time step, they cannot be dynamically connected.

With little noise (especially in real-world data), it is easy to generate dynamic networks with

no true non-trivial dynamic connected components; alternatively, it is just as easy to find real-

world data where the whole graph is one dynamic connected component and we cannot dis-

tinguish between vertices. To demonstrate this issue and how STGkM can handle such cases,

we construct a special type of dynamic network, see Definition 4.2. We then show that it has

only one dynamic connected component, but an intuitive notion of clusters. Lemma 4.2 shows

that using dynamic connected components would fail. Theorem 4.3 demonstrates our ability

to find the correct k clusters. Note that this theorem is not incompatible with Theorem 4.1,

which implies that if we set ran STGkM with a parameter of 1, we would indeed find the single

connected component.

Definition 4.2 (Clique-cross-Clique). Let k be the “ground-truth” number of clusters and n
be the number of vertices per cluster. We have a total of N≜ k × n vertices in V. For ease of index-
ing, we let vi,j be the jth vertex in the ith cluster, i.e. i 2 [k], j 2 [n]. We construct the following
dynamic graph: (vi,j, vi0,j0) is in Et if and only if one of the following conditions is satisfied:

1. self-loops, i.e. i = i0, j = j0

2. the vertices are in the same cluster, i.e. i = i0, j 6¼ j0

3. the vertices have the same position in their respective clusters and it is their “turn” to be con-
nected, i.e. i 6¼ i0, j = j0 and j = t mod n.

We will call such a dynamic graph G ¼ ðV;EtÞ a Clique-cross-Clique. An example is shown

in Fig 2.

Lemma 4.2. A Clique-cross-Clique has one dynamic connected component, namely all of its
vertices.

Proof. This dynamic graph is holding and non-stranding; at every time step, the static graph

induced by Gt = (V, Et) is connected. Therefore, by Proposition 3.4 in [5], this graph is dynam-

ically connected. Graphs that are dynamically connected have, by definition, one dynamic
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connected component. We note that intuitively, the idea is simply that each of the k clusters is

fully connected at all time steps and that between any two clusters, there is always an edge.

Theorem 4.3. Given a Clique-cross-Clique with k clusters, the partition of vertices induced by
the optimal solution to Expression 1 is exactly the k clusters with sufficient time.

Proof. First, we will show the simple fact that vertices in the same cluster have a smaller

objective value than those in different clusters given sufficient time. We observe that δt(u, v) =

1 for u, v in the same cluster for all time steps. If u, v are in different clusters, then δt(u, v)�2 at

least for k� 1

k ∗T time steps (this bound is conservative) given sufficiently large T (specifically,

T> 2k). Therefore, for any Wt
u;j > 0 that Wt

u;j � d
t
ðu; vÞ < Wt

u;j � d
t
ðu; v0Þ where u, v are in the

same cluster but u, v0 are in distinct clusters.

Second, we will show that the optimal cluster assignment is always to assign one entry of ct

to each cluster; we proceed by contradiction. Assume that we have found an optimal assign-

ment ct, W; select j 2 [k] and assume that ct contains no vertices that are in cluster j; let v be

some vertex in this cluster. By the pigeonhole principle, there must be two vertices in ct that

are in the same cluster: call them u, u0 and let i, i0 be their respective indices. We will show that

we can switch one of these “duplicate” vertices to v to decrease our objective value. Select some

vertex w in the same cluster as u and w0 in the same cluster as v. Since δt(w, u) = δt(w, u0), we

know that ðWt
w;i þWt

w;i0 Þ � d
t
ðw; uÞ ¼Wt

w;i � d
t
ðw; uÞ þWt

w;i0 � d
t
ðw; u0Þ. In other words, if we

remove u0 from ct
i0 , then we could simply update Wt

w;i to take the value of Wt
w;i þWt

w;i0 without

changing the objective value. Thus, if we set ct
i0 to v, then we observe that the overall objective

value has not changed for vertices in the same cluster as u.

However, if we set ct
i0 to v, by the fact that we showed in the beginning of this proof, there

would be an update to W that would indeed decrease the overall objective value. For complete-

ness, we observe that for a vertex that is not in the cluster with u nor with v would remain unaf-

fected. Such an assignment is thus not minimal, which is a contradiction.

Remark 4.4. Note that when λ = γ = 1, then Expression 2 and, in fact, even our single mem-
bership scheme also finds the optimal result.

4.3 More powerful than static clustering

One common clustering technique with dynamic networks is to simply convert a dynamic net-

work into a static one. In particular, one easy way to “aggregate” a dynamic network is to

count the total number of dynamic edges between two vertices. We can then perform

Fig 2. Visualization of a Clique-cross-Clique over three timesteps. The graph consists of three “ground truth” clusters with five members each.

https://doi.org/10.1371/journal.pcsy.0000023.g002
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traditional static clustering on such a static graph. However, this method will certainly miss

important dynamic properties. We construct an example in Definition 4.3 and show that the

total number of edges between vertices is uniform in Lemma 4.7—and so static clustering will

not be able to meaningfully distinguish between vertices—but that STGkM will find the appro-

priate number of clusters, see Theorem 4.8. This example is, in fact, a motivating example for

STGkM and provides some insight into how we can find induced clusters over time.

Definition 4.3 (Theseus Clique). Let U be the set of vertices u0, . . ., un−1 and W be the set of
vertices w0, . . ., wn−1. In this case, V≜ U [W is our vertex set with 2n vertices. Let r 2 N be the
“round” index and i 2 N be the “slice” index; we parameterizes our “time” index as t(r, i) = r * n
+ (i mod n).

We thus define a dynamic graph G ¼ ðV;EtÞ where

E0 ≜ fðu; u0Þ : u; u0 2 Ug [ fðw;w0Þ : w;w0 2Wg

and then

Et ≜ Sr;iðEt� 1Þ

where Sr,i swaps all edges involving the vertices ui, w(i+r) mod n. Formally, (a, b) 2 Sr, i(E) if and
only if:

1. a =2 Pr, i, b =2 Pr, i and (a, b) 2 E

2. a 2 Pr, i, b 2 Pr, i and (a, b) 2 E

3. a 2 Pr, i, b =2 Pr, i and ð�a; bÞ 2 E

4. a =2 Pr, i, b 2 Pr, i and ða; �bÞ 2 E

where Pr,i = {ui, w(i+r) mod n} and �� of an element • in Pr,i is simply the other element. An
example is shown in Fig 3.

Lemma 4.5. The total number of edges at any given time in a More powerful than static clus-
tering is 2n2.

Fig 3. Visualization of a Theseus Clique, with n = 5 nodes in each ground-truth cluster. The clusters are disconnected every n time steps, and the

connectivity pattern repeats every n2 time steps.

https://doi.org/10.1371/journal.pcsy.0000023.g003

PLOS COMPLEX SYSTEMS Vertex clustering in diverse dynamic networks

PLOS Complex Systems | https://doi.org/10.1371/journal.pcsy.0000023 December 5, 2024 10 / 29

https://doi.org/10.1371/journal.pcsy.0000023.g003
https://doi.org/10.1371/journal.pcsy.0000023


Proof. We can proceed by induction. By construction E0 has 2n2 edges since it is the union

of two sets of size n2; also, note that, by construction, each vertex has degree n.

We assume that El has 2n2 edges and every vertex has degree n. By construction, note that if

an edge is in El+1, there is a corresponding edge in El and so we cannot have more than 2n2

edges. Now, we observe that (a, b) 2 El+1 when (a, b) 2 Ela, b =2 P, where P is the relevant swap-

ping set. In these cases, we have clearly preserved the number of edges and the degree of each

vertex. Now, we note that if a 2 P, then for every edge that includes a in El, there is an edge

that includes �a in El+1; if there is an edge that includes �a in El, then there is an edge that

includes a in El+1. In other words, we have not changed the number of edges, nor the degree of

any vertex.

Lemma 4.6. A Theseus Clique has two static connected components that are cliques at any
given time step.

Proof. We can proceed by induction. By construction, E0 has two cliques. We assume that El

has two cliques, say A, B. Let a, b 2 P be distinct. If a, b are in the same clique, then El+1 trivially

preserves cliques. If a, b are in different cliques, say a 2 A, b 2 B, then we observe that (a, b) =2

El and so (a, b) =2 El+1. Next, we note that (a, a0) =2 El+1 for any a 2 A: because (b, a) =2 El (by our

inductive hypothesis), then ð�a; aÞ=2El because �a ¼ b. Symmetrically, this must be true for b.

Finally, we need only observe that by Lemma 4.5, since degree is preserved, then we must have

maintained two cliques.

Lemma 4.7. For a Theseus Clique with total time steps T that is some positive multiple of n2,

then the number of edges between any two vertices v, v0 2 V is T
2
.

Proof. Every vertex has constant degree by Lemma 4.5. Because of Lemma 4.6, we know

there are always two cliques. At the end of each round, our cliques return to U, V by construc-

tion. Finally, note that every vertex in U and every vertex in V is connected exactly once per n2

time steps.

Theorem 4.8. Given a More powerful than static clustering, the partition of vertices induced
by the optimal solution to Expression 1 with 2 clusters has lower objective value than with 1

cluster.

Proof. By construction, δt(u, v) is either 1 or1 if u, v are the in same clique at time t or not,

respectively. The objective value with 1 cluster is therefore1, since there exists at least one

vertex that is not in the same clique as the cluster center. There exists a finite objective value

with 2 clusters: namely, at each time step, simply select a cluster center from each clique,

which is well-defined by Lemma 4.6.

4.4 Robust to noise

Here, we use a similar setup as in Section 4.2, but we define a stochastic system, rather than a

deterministic one. Theorem 4.11 shows that we still find the correct number of clusters in

expectation. This result is somewhat weak, since we do not provide any analysis on the distri-

bution of the number of clusters, nor do we provide a sensitivity analysis with respect to

noise. That type of analysis is much more complicated, which we hope to provide in future

work. However, our result provides at least some theoretical guarantees that STGkM is

insensitive to noise, and we suspect that it is actually quite robust to noise based on our

empirical results.

Definition 4.4 (Random Clique-cross-Clique). Let k be the “ground-truth” number of clus-
ters and n be the number of vertices per cluster. We have a total of N≜ k × n vertices in V. For
ease of indexing, we let vi,j be the jth vertex in the ith cluster, i.e. i 2 [k], j 2 [n]. We construct the
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following random dynamic graph: P ðvi;j; vi0;j0 Þ 2 Et
h i

is

1 i ¼ i0; j ¼ j0

p i ¼ i0; j 6¼ j0

p0 i 6¼ i0; j ¼ j0

0 i 6¼ i0; j 6¼ j0

8
>>>>>>><

>>>>>>>:

where 1> p> p0 > 0. In other words, each edge at each time step is a Bernoulli random variable
and we further require that each is independent. We will call such a random dynamic graph G ¼
ðV;EtÞ a Random Clique-cross-Clique. An example is shown in Fig 4.

Lemma 4.9. A Robust to noise is time-homogenous Markovian.

Proof. For distinct time steps t, t0 note that induced static graphs Gt ¼ ðV;EtÞ;Gt0 ¼

ðV;Et0 Þ are independent by definition. Note that each edge is a Bernoulli random variable with

probability that does not depend on time, so Gt;Gt0 are identically distributed.

Lemma 4.10. Given a Robust to noise with appropriate k, p, p0; and given vertices u, v, v0 such
that u, v are in the same cluster and u, v0 are in distinct clusters; then E½dt

ðu; vÞ� < E½dt
ðu; v0Þ�.

Proof. In the trivial case where u = v, then E½dt
ðu; vÞ� ¼ 1; since there is non-zero probabil-

ity, namely 1 − p0, that (u, v0) =2 Et, then E½dt
ðu; v0Þ� > 1. We thus proceed by assuming that u 6¼

v.

First, let Xu,v represent the first t such that (u, v)2Et—formally, Xu,v = min{t: (u, v) 2 Et}—

and let Xu,v0 be the analogous random variable for the edge u, v0. These are geometric random

variables by construction and have well-defined expectations. Since δt(u, v) is the length of the

shortest journey, then E½dt
ðu; vÞ� � E½Xu;v�. This fact holds because one possible journey from

u to v is simply to stay at u (because of the almost sure self-loops) and then to cross the edge

from u to v when it appears for the first time. The shortest journey must thus be no larger than

whenever this edge first appears. Therefore, E½dt
ðu; vÞ� is well-defined and, by similar logic, so

is E½dt
ðu; v0Þ�.

Next, we will show that any journey between u, v is at least as likely to exist in the dynamic

graph as any “equivalent” journey between u, v0: Because our dynamic graph is Markovian by

Fig 4. Visualization of a Random Clique-cross-Clique containing three clusters with five nodes each, intra-cluster connection probability p = .30,

and inter-cluster connection probability p0 = .20.

https://doi.org/10.1371/journal.pcsy.0000023.g004
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Lemma 4.9, we can simply assume we are starting at time t = 1 without loss of generality. Let j
≜ (u, w1, . . ., wl−1, v) be any journey of length l starting at time step t where no wi is v or v0. Let

j0 ≜ (u, w1, . . ., wl−1, v0) be the “equivalent” journey of length l. We observe that P½ðwl� 1; vÞ 2
El� � P½ðwl� 1; v0Þ 2 El� by construction. Since any journey can be written in this form, any

journey between u, v is at least as likely to exist in the dynamic graph as any journey between

u, v0.
It is a tedious and technical matter to address the case where j includes v0 and j0 includes v.

To do this, we first observe that if v appeared in j before the last vertex, then it would not be a

proper journey of length l by definition. We then define a notion of journey equivalence where

if j contains any instances of v0, we swap these to v in j0 and we show that we have not inadver-

tently increase the probability of j0. From here, we can conclude that our statement is still

correct.

Finally, we note that if any journey between u, v is at least as likely to exist as the equivalent

journey between u, v0, then E½dt
ðu; vÞ� � E½dt

ðu; v0Þ� by definition of a shortest journey. To

wit, if the probability of a journey j increases, then the probability that the shortest journey is

longer than j cannot increase. Now, we observe that:

E½dt
ðu; vÞ� ¼ pþ cð1 � pÞ

E½dt
ðu; v0Þ� ¼ p0 þ c0ð1 � p0Þ

where c, c0 represents the expected shortest journey length conditioned on the edge (u, v), (u,

v0) not existing. Since we showed that 1< c� c0 and by definition p> p0, then

E½dt
ðu; vÞ� < E½dt

ðu; v0Þ�.
Theorem 4.11. In expectation, given a Robust to noise with k clusters, p, p0, the partition of

vertices induced by the optimal solution to Expression 1 is exactly the k clusters with sufficient
time.

Proof. By Lemma 4.10, we know that E½dt
ðu; vÞ� < E½dt

ðu; v0Þ�. By linearity of expectation,

we can simply apply Theorem 4.3.

5 Experimental results

5.1 Synthetic data

We begin by evaluating STGkM across a series of synthetic networks with ground truth. We

compare STGkM’s performance against three other methods: connected components found at

every time step (CC), k-medoids run on a coupling graph defined as the inverse of the sum of

the total number of edges between nodes over time, and DCDID [4]. We choose to compare

against DCDID, since it was shown in [4] to outperform a handful of other methods in detect-

ing quality dynamic communities. We note that DCDID is completely parameter free and

does not require knowledge of the number of clusters k, whereas k is a required input for

STGkM and k-medoids. While the parameter-free nature of DCDID is attractive and admit-

tedly gives the algorithm the ability to operate in domains where both the number of nodes

and clusters change over time, we show that this flexibility results in a tradeoff with cluster

consistency. We will show that although STGkM maintains a fixed number of clusters, the

restriction gives insight into cluster behaviour that none of the other methods can provide.

We complete 100 independent runs of each method. The parameters for STGkM are set to

the default values of λ = 1 and γ = 1. The ground truth contains the long-lived partitions of

nodes, but STGkM, DCDID, and CC all report short-term clusters, i.e. a label for each node at

every time step. Therefore, for all the aforementioned methods, we use Phase 2 of STGkM to

predict long-term clusters. Since k-medoids run on a flattened graph outputs only a single,

PLOS COMPLEX SYSTEMS Vertex clustering in diverse dynamic networks

PLOS Complex Systems | https://doi.org/10.1371/journal.pcsy.0000023 December 5, 2024 13 / 29

https://doi.org/10.1371/journal.pcsy.0000023


long-term cluster assignment, we use it’s output directly. We report average Adjusted Mutual

Information (AMI) score, with results shown in Table 1. Though these scores are representa-

tive of the quality of long-term cluster identification, we also stress the quality and importance

of identifying cohesive, short-term clusters. Of all the methods, STGkM is the only one that is

built to enforce lasting cluster identities (i.e. cluster 0 at time 0 is cluster 0 at time n). The

implications of this requirement can be observed in Figs 5–10, which visualize the clustering

histories of each node, as predicted by STGkM, CC, and DCDID. The colors in the figures cor-

respond to unique cluster identities. While CC and DCDID can sometimes predict upwards of

50 unique short-term clusters in a time window, STGkM tracks the evolution of a specified

number of clusters that are automatically associated. This innovation, unavailable with any of

the other methods, allows us to directly observe the evolution of the makeup and stability of

our long-term clusters.

5.1.1 Clique-cross-Clique. We create a Clique-cross-Clique with a ground truth of three

clusters containing five nodes each. As seen in Table 1, both STGkM and k-medoids identify

the long-term ground truth communities correctly, while DCID and CC perform quite poorly.

Although k-medoids does well in identifying the long-lived node partitions, it gives no insight

into short-term cluster behavior, which all three of the other methods do. Fig 5 visualizes how

cluster membership evolves for each node using the other three algorithms. While DCDID

and CC identify only the connected component in the network (see Lemma 4.2), STGkM

Table 1. Average AMI scores (higher is better) of 100 independent runs of various community detection methods over a range of synthetic datasets. STGkM is our

method, CC uses dynamic connected components, k-medoids compresses a dynamic graph into a single static one and uses k-medoids, and DCDID is a heuristic method

[4]. The best performance is bolded.

Dataset STGkM CC k-medoids DCDID

Clique-cross-Clique 1.000 0.019 1.000 0.019

Strong Random Clique-cross-Clique 0.989 0.032 0.932 0.240

Mixed Random Clique-cross Clique 1.000 1.000 1.000 1.000

Weak Random Clique-cross-Clique 0.920 1.000 0.971 0.983

Theseus Clique 1.000 1.000 0.541 1.000

Three Clusters 1.000 0.763 1.000 0.995

https://doi.org/10.1371/journal.pcsy.0000023.t001

Fig 5. Cluster assignment histories of STGkM, CC, and DCDID run on a Clique-cross-Clique. CC and DCDID identify only the single, connected

component at every timestep, whereas STGkM finds three stable clusters.

https://doi.org/10.1371/journal.pcsy.0000023.g005
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Fig 6. Cluster assignment histories of STGkM, CC, and DCDID run on a Strong Random Clique-cross-Clique. Due to the strong connectivity, CC

can only ever find a single connected component. DCDID sometimes finds multiple clusters, but they are inconsistent. STGkM finds three relatively

stable, evolving communities.

https://doi.org/10.1371/journal.pcsy.0000023.g006

Fig 7. Cluster assignment histories of STGkM, CC, and DCDID run on a Mixed Random Clique-cross-Clique. Though all three methods have three

unique groups of cluster histories, only STGkM’s persist throughout time and give insight into cluster evolution.

https://doi.org/10.1371/journal.pcsy.0000023.g007

Fig 8. Cluster assignment histories of STGkM, CC, and DCDID run on a Weak Random Clique-cross-Clique. Due to the disconnected nature of

the network, CC and DCDID find upwards of fifty unique clusters throughout the duration of the simulation. Contrastingly, STGkM monitors the

evolution of three cohesive communities.

https://doi.org/10.1371/journal.pcsy.0000023.g008
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properly identifies the three distinct clusters. Unsurprisingly, these clusters remain extremely

stable. This experiment emphasizes STGkM’s granularity over connected components.

5.1.2 Strong random Clique-cross-Clique. Next, we evaluate a strong Random Clique-

cross-Clique with three clusters, five nodes per cluster, p = 0.50, and p0 = 0.30. We choose both

p and p0 to be well above the threshold of the Erdős–Rényi bound [31], meaning that the graph

will most likely be fully connected at every time step. We generate a new network for every

evaluation. Again, STGkM and k-medoids perform best. Fig 6 emphasizes that once more,

STGkM is the only algorithm that finds consistent short-term clusters as well.

5.1.3 Mixed random Clique-cross-Clique. Four our next experiment, we use a Random

Clique-cross-Clique with three clusters, five nodes per cluster, p = 0.50, and p0 = 0.05. This

time, we set p above and p0 below the Erdős–Rényi bound [31]. We generate a new network

for every evaluation. In this paradigm, the graph will often separate into three separate con-

nected components, making it unsurprising that all three methods correctly identify the

Fig 9. Cluster assignment histories of STGkM, CC, and DCDID run on a Theseus Clique. CC and DCDID identify the two connected components

at every time step, while STGkM attempts to maintain some level of stability in cluster identity over time.

https://doi.org/10.1371/journal.pcsy.0000023.g009

Fig 10. Cluster assignment histories of STGkM, CC, and DCDID run on Three Clusters. Only STGkM is able to track how three clusters evolve. CC

and DCDID predominantly find only a single cluster.

https://doi.org/10.1371/journal.pcsy.0000023.g010
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ground truth long-term clusters. However, as we see in Fig 7, the quality of short-term clusters

produced by STGkM, CC, and DCDID differ greatly. Although the clustering histories of

points 0 − 4, 5 − 9, and 10 − 15 have strong similarities to one another, respectively, across all

three algorithms, only STGkM’s clusters are consistent and allow us to observe cluster evolu-

tion, highlighting its performance over aggregate or incremental algorithms.

5.1.4 Weak random Clique-cross-clique. Our final Random Clique-cross-Clique has

three clusters, ten nodes per cluster, p = 0.10, and p0 = 0.01. With values of p and p0 both below

the Erdős–Rényi bound [31], the graph is be extremely disconnected. We generate a new net-

work for every evaluation. As seen in Table 1, all four methods identify the long-term parti-

tions near perfectly. However, Fig 8 again showcases STGkM’s superior identification of short-

term node relationships. Both CC and DCDID predict upwards of 50 unique clusters in a

given time window, while STGkM provides a continuous perspective of cluster evolution.

5.1.5 Theseus Clique. Our fifth synthetic graph is the Theseus Clique composed of two

clusters with ten nodes each over fifty time steps. As shown in Lemma 4.7, the total number of

edges between any two vertices in this graph is 25. As a result, k-medoids performs poorly on

this dataset, since the coupling graph cannot distinguish the strength of relationships between

nodes. Contrastingly, STGkM, CC, and DCDID all identify the ground truth clusters perfectly.

In Fig 9, we see that CC and DCDID perfectly separate the connected components at every

time step, while STGkM attempts to maintain some level of consistency, albeit weak, between

the two clusters.

5.1.6 Three clusters. Finally, we apply all three methods to a synthetic dataset, consisting

of three clusters with ten fully connected nodes in each cluster, tracked over twenty time steps.

The result is a dynamic graph with 30 nodes and 300 edges at each time t. At every time step

we randomly choose up to 30 edges to remove within clusters and up to 30 edges to add

between clusters. Table 1 shows that STGkM, k-medoids, and DCDID capture the ground

truth clusters best. Unlike the other two methods, k-medoids does not give a glimpse into how

the clusters evolve over time. A snapshot of the evolution of detected clusters, as predicted by

STGkM, CC, and DCDID, is shown in Fig 10.

5.1.7 Robustness. Overall, we observe that STGkM has the most consistent performance

over a range of synthetic networks with respect to the accuracy of detected long-term clusters.

In addition, STGkM is the only method that forces consistency of predicted short-term clus-

ters, allowing us a glimpse into how clusters change over time. Our next goal is to argue the

robustness of STGkM.

According to Theorems 4.3 and 4.11, given sufficient time, STGkM will find the optimal

long-term clusters for both standard and Random Clique-cross-Cliques. We experimentally

test this claim by evaluating the accuracy of clusters predicted by STGkM versus number of

ingested time steps on one standard and multiple Random Clique-cross-Cliques with varying

numbers of clusters, cluster sizes, and intra- and inter-cluster connection probabilities. Fig 11

shows the sensitivity of STGkM to number of ingested time steps over networks with various

spatial complexities, temporal complexities, and connectivity levels. On a standard Clique-

cross-Clique, regardless, STGkM always quickly converges to the ground truth communities.

On Strong Random Clique-cross-Cliques with both strong intra- and inter- cluster connectiv-

ity, STGkM takes much longer to converge when the ground truth communities are made up a

small number of nodes. Still, we observe a clear upward trend in AMI score over the number

of time steps. On Mixed Random Clique-cross-Cliques with strong intra- but weak inter- clus-

ter connectivity, STGkM again converges quickly to the ground truth across network complex-

ities. On Weak Random Clique-cross-Cliques, where the network is predominantly

disconnected, STGkM again converges slower with small ground truth communities, but with
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a clear upward trend. Convinced of STGkM’s utility, we move on to testing the method on

real-world data.

5.2 Choosing k
Perhaps the greatest challenge in using a k-means-based approach for clustering is determin-

ing the optimal number of clusters. With regard to classical k-means, two of the most common

methods for choosing k are the Elbow Method [32], wherein the sum of square error of each

cluster is calculated, and the value of k which results in the most extreme difference (the

“elbow”) is chosen and silhouette score [33, 34], which provides a measure of cluster cohesion

versus separation.

In our previous work [1], we chose k using an approach similar to the Elbow Method but

specialized for multi-cluster membership. Unlike classical k-means where increasing k results

in points getting progressively closer to their centers, in mutli-membership STGkM, increasing

k is likely to cause vertices to be assigned to progressively more clusters simultaneously,

Fig 11. Sensitivity of AMI score for STGkM run on Standard and Random Clique-cross-Cliques with varying spatial complexities, time

complexities, and levels of connectivity. Though STGkM may take much longer to converge on small communities when inter- and intra-

connectivity are both very high or very low, there is a clear upward trend over time. STGkM will eventually find the ground truth communities.

https://doi.org/10.1371/journal.pcsy.0000023.g011
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resulting in in a larger objective value. This allows us to search for a local minimum, as

opposed to the “elbow,” in our plot of k vs objective value.

In this work, because we choose to restrict vertices to single cluster membership for

improved computational efficiency, we can no longer follow the same procedure. Since the

“elbow” can be very difficult to identify when using real data, we instead turn to the silhouette

score [33, 34]. As a note, silhouette score ranges between 0 and 1, and a higher silhouette score

is better. For each value of k, we calculate the average silhouette score over all time steps, and

choose the number of clusters that results in the maximum average silhouette score. We repeat

the experiments from [1] and show that they are consistent with our previous results. An

example of this process on the three cluster dataset from Section 5.1.6 is shown in Fig 12. As

expected, the highest average silhouette score is achieved when STGkM is run with the true

number (three) of ground truth clusters.

5.3 Detecting political parties

The experimental results in this subsection were first introduced in [1] and we reproduce

them here with minor edits for completeness. To demonstrate the utility of STGkM on a real-

world dataset, we turn to the political sphere. Communities naturally arise is politics, particu-

larly in recent years where we have witnessed polarization with political figures consistently

voting along party lines. Taking inspiration from [35], we form a dynamic graph based on 100

roll call votes from the House of Representatives between June 21, 2023 and July 27, 2023.

Each vote is a time step, each representative is a node, and nodes are connected if they vote the

same way on a bill. Possible votes are “Yea”, “Nay”, and “Present”. If a representative does not

cast a vote, they have no connecting edges for that vote. The ground truth communities are

representative’s affiliated political parties.

By running STGkM on the roll call graph, we can identify the communities of representa-

tives that vote similarly and observe how those communities evolve over time. Interestingly, in

Fig 12. Average silhouette score versus number of clusters on a synthetic dataset. Note: a higher score is better.

https://doi.org/10.1371/journal.pcsy.0000023.g012
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this example, the entire roll call graph is dynamically connected, since there are votes that have

consensus. Thus, using dynamic connected components as a clustering technique would not

work and we have to use a technique like STGkM to find clusters that align with the ground

truth.

We choose our maximum center drift to be λ = 1 and our time connectivity to be γ = 5.

Intuitively, we expect k = 2, corresponding to the two major US political parties, but in [1],

when using multi-membership STGkM, our k selection process recommended k = 3. Beyond

separating Democrats and Republicans into separate long-term clusters, we also identified an

additional sub-cluster of three Democrats who very often vote “Present” together, as opposed

to the majority Democratic party vote. Here, when using single-membership STGkM, we

instead find k = 2 to be optimal, as shown in Fig 13. Interestingly, however, if we set k = 3, we

are still able to recover the same sub-cluster of outlying Democrats, as in [1], up to

stochasticity.

Fig 14 visualizes the similarity scores, as defined in Eq 3, between the cluster assignment

histories for each pair of representatives when single-membership STGkM is run using k = 2

and k = 3. The rows and columns of the similarity matrices are ordered according to the dis-

covered long-term communities. In the left figure, these clusters correspond to Republicans

followed by Democrats, while in the right figure, the three outlying Democrats are moved to

the final three rows and columns of the matrix. We observe a distinct color difference between

these three rows and the remainder of the matrix, demonstrating that the similarity between

the outlying Democrats and remaining Democrats is much lower. These figures agree with

those generated in [1], using multi-membership STGkM.

5.3.1 Runtime. The difference in choice of optimal k between multi- and single-member-

ship STGkM is intriguing. Perhaps restricting to single cluster membership leads to a loss of

information, because we are forced to make immediate decisions about vertices that are equi-

distant from multiple centers. However, the computational speedup of restricting the search

space cannot be ignored. When running multi- and single- membership STGkM on the Roll

Fig 13. Average silhouette score versus number of clusters on the roll call dataset. Note: a higher score is better.

https://doi.org/10.1371/journal.pcsy.0000023.g013
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Call data 100 times each with k = 2, we find that the average runtime of multi-membership

STGkM is about 1.36 seconds, while the average runtime of single-membership STGkM is.93

seconds, a speedup of 32%. We expect this computational advantage to become even more

pronounced as our networks grow.

5.4 Detecting journal communities

For our next experiment, we explore communities based on citations between scientific jour-

nals. Using the Semantic Scholar API [36], we retrieve the 500 most cited papers for each year

between 2000 and 2024 that are returned by the query “dynamic network.” We then form a

connectivity matrix based on whether there is a citation from a paper published in journal u to

a paper published in journal v or vice versa in a given year. We also keep track of how many

times such citations occur with a weight function defined as follows: for journals u, v with m
total citations from papers in u to papers in v in year t, the s-journey between these two jour-

nals starting at time t will be scaled by 1

m. Our final dataset tracks 199 journals over 24 years.

The resulting connectivity matrix is sparse, with only 2.5% of entries containing nonzero

values.

We set our maximum center drift and time connectivity to the default values, λ = 1 and γ =

1. When searching for an optimal number of clusters between 2 and 20, we repeatedly return a

value close to the top of the range. For example, Fig 15 shows a situation where the optimal

choice is k = 18, and we report results for this parameter choice. Fig 16 captures the short term

cluster similarity scores between the cluster assignment histories for each pair of journals. The

rows and columns of the similarity matrix are ordered according to the long-term clusters dis-

covered by Phase 2 of STGkM. While we observe strong similarity within long-term clusters,

we also observe a coarse, macro-structure in the similarity matrix. For instance, cluster 0,

which contains 56% of journals covering a diverse range of topics, maintains above average

similarity with most clusters, other than cluster 1, which has a distinct general biology focus.

Fig 14. Matrices showing the similarity scores of short-term cluster assignment histories between every pair of vertices in the roll call dataset

using STGkM with γ = 5, λ = 1, and k = 2 on the left and k = 3 on the right. Rows and columns are ordered based on long-term cluster membership.

https://doi.org/10.1371/journal.pcsy.0000023.g014
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We also see strong similarities between pairs of long term-clusters, such as 1 and 2. Upon fur-

ther investigation, these contain journals focused on the closely related topics of general biol-

ogy and neuroscience, respectively. We look to the evolving contents of our clusters for further

explanation.

Fig 17 tracks the four most common journals in a subset of our 18 dynamic clusters. We

note no fewer than four clusters corresponding to biological topics, with separate clusters for

chemistry, molecular biology, cells, and neuroscience. Other topic clusters cover communica-

tions, neural networks, operations research and wireless/mobile networks, and computer

vision. The observation that journals covering similar topics are clustered together gives us

confidence in STGkM’s results.

One of the advantages of STGkM is that we can track a journal’s cluster membership over

time. Incidentally, this dataset also has just one large connected component. Unsurprisingly,

given the overlap in topic coverage between clusters, most journals’ memberships change

often. In fact, on average, a journal is a member of 5.51 clusters.

Because the majority of journals interact with many clusters, instead of distinct boundaries,

we maintain loose similarities between our long-term clusters, which helps explain the hierar-

chical structure in Fig 16. Digging further into which journals switch clusters most often, we

find that arXiv.org, with it’s general focus belongs to 10 different clusters at least once,

while a highly specialized journal like IEEE Transactions on Geoscience and
Remote Sensing never switches membership. Perhaps, there is a loose relationship

between the breadth of topics that a given journal covers and the stability of a journal’s cluster

assignment history.

Fig 15. Average silhouette score versus number of clusters on the Semantic Scholar dataset. Note: a higher score is better.

https://doi.org/10.1371/journal.pcsy.0000023.g015
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5.5 Detecting clusters of subreddits

For our final experiment, we seek to find clusters of subreddits based on posts over a 2.5 year

period between January 2014 and April 2017 [37]. We break the data into monthly windows

Fig 16. Matrix storing the similarity scores of short-term cluster assignment histories between every pair of nodes in the Semantic Scholar dataset

using STGkM with γ = 1, λ = 1, and k = 18. Rows and columns are ordered based on long-term cluster membership.

https://doi.org/10.1371/journal.pcsy.0000023.g016
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and restrict to subreddits with at least 20 posts in the 2.5 year period. We define a connection

between subreddit u and subreddit v if there is a hyperlink pointing to v present in the title of

post u or vice versa We use the same weight function as with the Semantic Scholar data, i.e., if

subreddits link to one another m times within time period t, the s-journey between those two

nodes starting at time t will be scaled by 1

m. We provide two different sets of analysis based on

whether the sentiment between the subreddits is positive or negative. The resulting positive

sentiment connectivity matrix tracks the interactions of 1619 subreddits, while the negative

sentiment connectivity matrix tracks the interactions of 115 subreddits, both over 41 months.

This graph is dynamically connected and thus has just one connected component.

Fig 17. Four most common journals for a selection of clusters from the Semantic Scholar dataset using STGkM with γ = 1, λ = 1, and k = 18. The

most common journals in each cluster tend to cover similar topics.

https://doi.org/10.1371/journal.pcsy.0000023.g017

Fig 18. Average silhouette score verses number of clusters on the Reddit dataset for subreddits with positive sentiment on the left and negative

sentiment on the right. Note: a higher score is better.

https://doi.org/10.1371/journal.pcsy.0000023.g018
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For both sets of analyses, we run STGkM with the default values λ = 1 and γ = 1. For the

positive sentiment subreddits, our k selection process repeatedly recommends values of k
towards the top end of our search range, and we report results for k = 19. For the negative

sentiment subreddits, our k selection process consistently settles on k = 2. These processes

are shown in Fig 18. One observation of note is that whereas the average silhouette scores

for the negative sentiment subreddits are similar to those in previous experiments, the

scores for positive sentiment subreddits are extremely low, suggesting that at most time

steps, nodes are very difficult to separate into clusters. This hypothesis is strengthened by

Fig 19, which shows the short term cluster similarity scores for both the positive and nega-

tive sentiment Reddit data, ordered by long-term cluster membership. Almost all positive

sentiment subreddits belong to one long-term cluster, while negative sentiment subreddits

are contained to two distinct long-term clusters. Since STGkM tracks both short- and long-

term interactions between nodes, we turn to the content of our dynamic clusters for an

explanation.

The first row of Fig 20 shows the four most common positive sentiment subreddits over

time in a selection of four clusters. The first cluster pertains to negative Donald Trump con-

tent, the second to operating systems and coding, the third to conservative political content,

and the fourth to sports. The second row of Fig 20 shows the ten most common subreddits

over time in our two dynamic negative sentiment clusters. The contents of the first cluster are

primarily political, as opposed to the contents of the second, even though there is some over-

lap. For instance, “btc” (bitcoin) is one of the most popular subreddits in both. These results

suggest that in both experiments, STGkM appropriately separates subreddits of different

Fig 19. Matrices showing the similarity scores of short-term cluster assignment histories between every pair of vertices in the Reddit dataset using

STGkM with λ = 1, γ = 1, and k = 19 on positive sentiment data on the left and λ = 1, γ = 1, and k = 2 on negative sentiment data on the right.

Rows and columns are ordered based on long-term cluster membership.

https://doi.org/10.1371/journal.pcsy.0000023.g019
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topics. The behaviour of our long-term clusters in Fig 19 can be explained by how often sub-

reddits switch clusters.

On average, positive sentiment subreddits belong to 5.88 clusters. In contrast, the cluster

membership of negative sentiment subreddits is much more stable. The idea that negative

sentiment is much more polarizing than positive sentiment is well-studied [3]. Therefore,

our observation that on average posts containing negative sentiment towards similar topics

have much more stable clustering histories than posts containing positive content is

unsurprising.

6 Conclusion

In [1], we introduced spatiotemporal graph k-means (STGkM) for community detection by

vertex clustering on dynamic graphs. The approach is unified over space and time and gives us

the ability to analyze both the short- and long-term partitions of graph vertices, monitor the

multi-scale relationships between communities, and has just three explainable parameters,

only one of which is required. We provide a principled approach to estimating the required

parameter: the number of clusters k. In this work, we improve the runtime and thereby the fea-

sibility of running STGkM on larger networks by embracing a new relaxation and carry out

experiments on six synthetic and three real-world datasets to empirically validate

performance.

Fig 20. Top row: Four most common subreddits for a selection of clusters from the positive sentiment Reddit data using STGkM with γ = 1, λ = 1, and

k = 19. Bottom row: Ten most common subreddits for the two dynamic clusters from the negative sentiment Reddit data using STGkM with γ = 1, λ =

1, and k = 2.

https://doi.org/10.1371/journal.pcsy.0000023.g020
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We also extend our theoretical guarantees and explain clustering behavior under certain

conditions. While in our conference paper, we show that the partition induced by STGkM is

identical to connected components in certain cases, in this work, we distinguish the cases

where we can find sensible clusters that dynamic connected components cannot. We also pro-

vide a result that demonstrates why dynamic clustering may find better partitions than a static

clustering technique; in particular, static clustering methods that aggregate or “average” behav-

ior and then cluster the resulting graph cannot capture important dynamics. Finally, we give

an initial result demonstrating that STGkM is robust to noise. We provide experimental evi-

dence of these theoretical results.

In our synthetic experiments, we showcase STGkM’s superior ability to identify both accu-

rate long-lived partitions and cohesive short-term clusters compared to a handful of existing

algorithms. In our experiments on real data, we find that STGkM is able to detect informative

clusters and make interesting conclusions about trends in the datasets, such as detecting outly-

ing political activity, the extent of similarity between subtopics of scientific journals, and sup-

porting evidence of polarization in negative versus positive sentiment social media posts.

These mathematical results align with the existing literature in each task’s respective area of

study, which provides further confidence that STGkM is finding “useful” clusters for real appli-

cations. These conclusions would not be possible without STGkM’s ability to break down the

multi-scale relationships between graph nodes.

One direction for further study is to extend STGkM to the online case. Because clustering is

carried out at each time step independently, relying only on the centers at the previous time

step to seed the current choice, it is feasible to transform STGkM to an online algorithm. The

main challenges will be in updating s-journeys and deciding how many time steps of a

dynamic graph to maintain and collect between cluster updates, but we leave this for future

work. Inspired by the results of our experiments on the Semantic Scholar and Reddit data,

another potential extension is a hierarchical version of STGkM. In the Semantic Scholar exper-

iments, we already saw promising hierarchical structure within the short term cluster similar-

ity matrix. On the other hand, in the Reddit experiments, we observed one massive long-term

cluster, but dynamic short-term clusters with distinct topic focuses. We hypothesize that by

intelligently applying STGkM to smaller and smaller subsets of data, we could more clearly

extract the evident hierarchical relationships in the Semantic Scholar data and perhaps further

break down the mega-cluster in the Reddit data.

In our future work, we seek to improve the efficiency of STGkM, both in practice and in

theory. As STGkM is applied to larger datasets, further approximation strategies will be nec-

essary to ensure feasibility. We would also like to provide guidance on the quality and con-

vergence of our approximation strategies. The theoretical guarantees in this paper are only

correct under narrow conditions, so we would like to provide more contexts in which clus-

tering is assured to work correctly. Finally, we would like to provide much more precise

results in the stochastic setting with more specific bounds on STGkM’s output based on

noise. We will also explore online extensions of STGkM, where we explore dynamic graphs

in real-time. We intend to leverage STGkM in a variety of applications and we hope that it

becomes an interesting tool in the study and analysis of various network-based data for data

practitioners.
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