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Abstract

In this paper, we provide additional theoretical and experimental results for
spatiotemporal graph k-means (STGkM)—a new unsupervised method to cluster
vertices within a dynamic network. STGkM finds both short-term dynamic clusters and
a “long-lived” partitioning of vertices within a network whose topology is evolving over
time; we first introduced this technique in a recent conference paper. In this work, we
provide an updated exposition of the algorithm with a more efficient relaxation scheme.
We review our previous theoretical results with respect to connected components, along
with further analysis for certain important classes of dynamic networks to distinguish
STGkM from connected components and static clustering. We also provide results for
the stochastic setting for the first time. With respect to empirical results, we report on
additional experiments from the previously used United States House of Representatives
dataset, along with new results on a dynamic scientific citation network and Reddit
dataset. These findings demonstrate that STGkM is efficient, informative, and operates
well in diverse settings. Finally, as previously noted, one of the main advantages of
STGkM is that it has only one required parameter: k, the number of clusters; we
therefore include an extended analysis of the range of this parameter and guidance on
selecting its optimal value.

Author summary

With the explosion of data about the world around us, we must constantly develop new
ways of studying datasets. One popular method for analysis is k-means, which can
identify clusters of related objects based on shared characteristics. Traditionally,
k-means worked over sets of objects (e.g. animal subjects in a biology study) for which
it was possible to define a list of consistent, numerical, and complete “features” or
pieces of information (like age or weight). Over the years, this algorithm has been
adapted for a variety of datasets and implemented in efficient code libraries. Our paper
builds on this vast literature to extend k-means to the setting of networks that change
over time, and we provide a practical and efficient implementation of it for real-world
usage. We show that our new algorithm works on datasets like the United States House
of Representatives roll call votes, citation networks from major publications, and a
sample of Reddit posts. We also provide formal mathematical proofs and demonstrate
the theoretical soundness of our technique.
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1 Introduction 1

As we have previously noted [1, 2], dynamic graphs are prevalent mathematical 2

structures that capture important aspects of the rich and frenetic world around us. 3

Though graphs, or networks, have traditionally been studied as static objects, many 4

such systems evolve over time. Also called “time-varying” or spatiotemporal graphs, 5

they extend static graphs by permitting edges to change, and they inherently reflect 6

many systems, e.g., road networks, online communities, and epidemic spread. While we 7

have made strides in understanding them, there are still many exciting open questions 8

about dynamic graphs, especially when compared to our relatively compendious 9

knowledge about static ones. 10

In this paper, we expand upon spatiotemporal graph k-means (STGkM)—a novel 11

technique that we first introduced as a recent conference paper [1]—which is able to 12

track the multi-scale relationships between graph vertices. STGkM applies a two-phase 13

clustering approach, wherein the first phase outputs an assignment for each vertex at 14

every time step and the second phase produces a single, long-term partition of vertices 15

based on historical cluster membership. STGkM identifies communities of interest and 16

automatically tracks their evolution. 17

Leveraging some theoretical analysis, we can show when and how our method relates 18

to dynamic connected components. In some cases, we exactly align with this technique 19

for vertex clustering, but we also demonstrate where our method finds sensible clusters 20

when connected components is too strong of a concept. We also demonstrate why 21

dynamic clustering is superior to simple static clustering in a dynamic network and we 22

provide a basic result demonstrating robustness to noise. Our empirical results show, 23

first and foremost, that STGkM is applicable to a diverse range of datasets. It is also 24

efficient and tractable. We also observe many interesting results, like finding political 25

parties in voting networks and evidence for polarization in online discourse: here, we 26

provide mathematical evidence for corresponding results in the social sciences [3]. 27

2 Related Work 28

Much of the literature on dynamic graphs focuses on extending well-known concepts 29

from the static case like connectivity [4], optimal routing [5], induced dynamical 30

systems [6], and more. Further work has been done in applying dynamic networks to 31

sports analytics, machine learning [7], and epidemiological spread [8, 9]. Our work fits 32

into this foundational literature by extending the notion of vertex clustering. Graph 33

clustering is a fundamental tool for network analysis, with applications across the social 34

and natural sciences, and we seek to bring this tool to the dynamic setting. In dynamic 35

graph clustering, we find a partition of graph vertices that takes into account both 36

spatial similarity—so that there are many edges within a cluster and relatively few 37

between clusters—and temporal similarity, so clusters stay consistent. These partitions 38

help us detect latent community structures. 39

In static graphs, vertex clustering has a broad literature with interdisciplinary 40

interest and there has been a push to extend these results to the dynamic setting. Most 41

approaches to dynamic community detection find clusters independently at each time 42

step and then use aggregation to successively infer relationships between partitions [10]. 43

These methods are often unable to achieve temporal smoothness and inevitably do not 44

capture the dynamics of the network [11]. Another subset of methods first constructs a 45

single coupling graph that summarizes the temporal properties of the dynamic network 46

and then runs a classic community detection method on this graph [12]. As with 47

aggregation, the use of coupling graphs results in a loss of temporal information. 48

Evolutionary clustering addresses this shortcoming through a unified framework, 49
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where clusters are iteratively formed based on current network structure and previous 50

partitions. A cost function regulates the tradeoff between cluster quality at each 51

snapshot and cluster consistency [13]. This framework has been successfully adopted 52

and refined [14,15]. Other lines of research extend static community detection using 53

online algorithms [16], machine learning [17], or systems-based approximation 54

algorithms [18]. These papers leverage diverse methods to contend with the sometimes 55

staggering size of dynamic networks. 56

Our method, STGkM, develops a unified framework akin to, but distinct from, 57

evolutionary clustering [13]. STGkM, achieves temporal smoothness by restricting the 58

search space of new cluster centers based on temporal reachability from previous centers. 59

In addition, our method goes further than existing techniques to also extract long-lived 60

communities of vertices based on historical dynamic cluster membership. STGkM is the 61

graph analogue to our previously developed point-based method [19]. We first 62

introduced a notion of STGkM in an extended abstract with some preliminary evidence 63

of its effectiveness and later as a conference paper, but we have since refined our 64

approach and this work provides our complete results [1, 2]. 65

Finally, we note that there are numerous methods to group vertices within a 66

dynamic network, each with its own motivation, challenges, and rich literature. Our 67

method of vertex partitioning prioritizes long-term stable connections and our main 68

theoretical result highlights the relationship to the distinct concept of connected 69

components. However, there are many other interesting notions of connectivity [20] with 70

variants in stochastic settings [21] along with other related problems, like motif 71

detection [22], centrality measurement [23–26], and even novel frameworks for capturing 72

properties of dynamic networks [27]. 73

3 Spatiotemporal Graph k-means (STGkM) 74

Our goal is to partition a vertex set given a dynamic graph. In STGkM, we construct a 75

partition by finding central nodes to represent each cluster and then assigning each 76

remaining vertex based on its closest central node.1 Just as with k-means, we define the 77

problem of finding good clusters as a minimization problem; our novel objective has a 78

unified formulation over space and time that predicts a partition for each vertex at 79

every time step. After pre-processing, STGkM consists of two phases: in a single pass of 80

Phase 1, the algorithm outputs vertex membership and dynamic cluster center journeys; 81

in Phase 2, we extract the long-lived communities. 82

3.1 Setup 83

As input data, we need: 84

• A (finite2) indexed vertex set: V 85

• A (finite) totally ordered time set: T, usually T ⊂ N 86

• A dynamic graph: G = (V,Et)t∈T where Et ∈ V × V 87

• (optional) a non-negative real cost function ωt : V × V → R for all t ∈ T 88

Our parameters are k ∈ N, the number of clusters, and—optionally—λ ∈ N, the 89

maximum cluster center drift, and γ ∈ Z≥0, the drift time window. 90

1Our approach is perhaps more analogous to k-medoids, but in a network context, the distinction
between k-means and k-medoids is not clear.

2In principle, SGTkM would exist in the infinite case, but we could not find a practical application
and so will not consider this possibility in this paper.
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3.2 Pre-processing 91

For all pairs of vertices across time, we compute and store the s-journey δ, see [4] for 92

details. The value of δt(u, v) is the length of the shortest journey (i.e. dynamic path) 93

starting at vertex u at time t and ending at vertex v. If no such journey exists, it 94

assigns +∞. Thought not a true metric (it is missing symmetry and coincidence), this 95

function has the same purpose as a distance in classical k-means. If we have a weight 96

function, we consider this the “cost” of an edge, i.e., an edge with a smaller weight is a 97

“shorter” edge and a missing edge has essentially “infinite” weight. If no weight 98

functions are provided or if the weight functions only output natural numbers, then δ 99

will assign only natural numbers.3 We also define the related true metric 100

δ̃t(u, v) ≜ δt(u, v) + δt(v, u)

with the additional convention that δ̃t(u, u) = 0. 101

3.3 Phase 1 102

Given a fixed value of k, the first phase of STGkM selects a set of k vertices to serve as 103

cluster centers and assigns each vertex to a cluster at every time step. Vertices have the 104

flexibility to switch cluster membership at every time step, but cluster centers are 105

constrained by drift parameters λ and γ. 106

3.3.1 Natural Objective 107

The natural extension of k-means would be to optimize the objective function in 108

Expression 1: 109

min
c∈C,W∈W

∑
t∈T

∑
u∈V

∑
j∈[k]

W t
u,j · δ̃t(u, ctj) (1)

where we minimize over cluster centers C and assignment tensors W. Formally, C is the 110

set of all sequences of length |T| where each element is an ordered subset of V with k 111

elements; W ≜ {0, 1}|T|×|V |×k such that
∑

j∈[k] W
t
u,j ≥ 1. Note that each vertex is 112

assigned to at least one cluster at every time step. 113

3.3.2 Objective with Regularization 114

Optimizing Expression 1 is NP-hard4, so we instead iteratively optimize a modified 115

objective function that restricts the search space. We begin by choosing initial cluster 116

centers c0 to be the nodes that are most closely connected to all others at t0. When 117

there are ties, we sample randomly. At each time t henceforth, we assume that we have 118

chosen optimal cluster centers cs for all s < t, and we minimize Expression 2. 119

min
c,W

∑
u∈V

∑
j∈[k]

W t
u,j · δt(u, ctj)

such that δt−q(ct−1
j , ctj) ≤ λ, where 1 ≤ q ≤ γ and 1 ≤ j ≤ k

(2)

The constraint in Expression 2 imposes that the center of a given cluster can only 120

switch from vertex u to vertex v if the distance between them is no more than λ for the 121

previous γ time steps. This regularization serves two purposes: first, it associates 122

dynamic clusters between time steps; second, it restricts the search space for cluster 123

3As a practical matter, we can deploy a tie-breaking scheme when comparing two distances that are
both infinity.

4To see why, observe that k-medoids is NP-hard [28].
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centers5. As we decrease λ or increase γ, we decrease the number of potential centers at 124

time t and enforce stricter cluster consistency; see Figure 1 for an example. 125

3.3.3 Optimizing Our Objective 126

We can further make our method more efficient, see Section 5.3.1 for empirical 127

performance comparisons. In optimizing Expression 2, observe that at each time step, 128

each vertex could belong to multiple clusters, since the rows of W t are not restricted; we 129

only require the overall tensor to be binary. However, we can further require that each 130

row of W t have exactly one non-zero entry; in other words, each vertex can only be in 131

one cluster. The former approach, as explored in [1], allows us to avoid making strong 132

assignments and potentially falling into a local minimum, but increases computational 133

complexity. The latter approach is more attractive for the analysis of larger graphs, as it 134

restricts the search space of potential cluster centers even further. We therefore focus on 135

the latter method in this paper so that we can explore larger dynamic graph structures. 136

Our algorithm is an adaptation of FasterPAM with eager swapping, as detailed 137

in [29]. FasterPAM consists of two phases: the BUILD phase, which finds initial cluster 138

centers, and the SWAP phase, which efficiently seeks iterative improvements for the 139

cluster centers by scanning over all vertices in the graph. We run the BUILD phase, as 140

implemented in [29], on the first time slice of our matrix storing s-journeys. For all 141

following time steps, we update the center of a cluster only if the objective value is 142

improved. To do so, we run eager SWAP phases, where instead of considering all points 143

as potential swaps for each center, we consider only those points which are reachable 144

based on the constraint in Expression 2. We greedily update cluster centers, performing 145

any update that yields some improvement in the loss function. Our algorithm terminates 146

until either the clusters stabilize or we reach a maximum number of iterations. 147

3.3.4 Algorithmic Analysis 148

The main feasibility issue with STGkM arises from finding new cluster centers at every 149

time step. Evaluating all possible subsets of size k of |V | is NP-hard. The objective in 150

Expression 2 does not obviate this possibility in the worst case, even though in practice, 151

the added regularization makes it unlikely. In order to further improve run time, we 152

build upon FasterPAM, as discussed above and take advantage of the fact that 153

FasterPAM deploys the strategies of local search and greedy updates. As discussed 154

in [29], the runtime complexity of a single BUILD phase of FasterPAM is O(k|V |2), and 155

in the worst case, where every vertex would be reachable from every medoid, the 156

runtime complexity of each SWAP phase would be O(|V |(|V | − k)). This means that in 157

the worst case, Phase 1 of STGkM has a runtime complexity of O(|T||V |2). 158

3.4 Phase 2 159

By building on Phase 1, Phase 2 of STGkM aims to identify the long-lived partitions of 160

graph vertices. The output is an assignment of communities containing vertices with the 161

most similar spatiotemporal characteristics. Intuitively, we expect vertices with similar 162

partitioning histories to belong to the same persisting community in the long run. 163

Recall that the Hamming distance is defined by counting the number of entries 164

where two matrices disagree: H(u, v) ≜ |{(t, k) : W t
u,k ̸= W t

v,k}|. Using this distance, we 165

define similarity sim(u, v) as 166

sim(u, v) ≜ 1− H(u, v)

|T|
(3)

5In the worst case, e.g. when the graph is complete at every time step, optimizing this objective is
still NP-hard, but in practice, it makes STGkM tractable.
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Fig 1. At time t, ct0 is chosen based on ct−1
0 . The drift time window γ determines for

how many previous time steps centers must be within maximum drift λ of one another.
The objective in Expression 2 is evaluated for all potential cluster centers; the center
that minimizes the objective is chosen.

This definition gives us a powerful way to compare all pairs of vertices. Since sim(·, ·) is 167

compatible with traditional clustering techniques, we input it to agglomerative 168

clustering. We then output the resulting partition to get a clustering of the vertices 169

based on long-lived communities as desired. 170

4 Theoretical Results 171

We provide some insight into how STGkM operates with some theoretical observations. 172

Namely, our results are as follows: 173

1. Theorem 4.1: in certain cases, we find dynamic connected components. The key 174

point is that we can recover a well-known concept of clusters. We provide 175

sufficient conditions for when STGkM is identical to the problem of finding 176

dynamic connected components. This result was first shown in [1] and we simply 177

restate the main theorem here. 178

2. Theorem 4.3: in other cases, we recover something other than dynamic connected 179

components, which both draws a distinction between the clusters induced by 180

STGkM and dynamic connected components, as well as highlights the utility of 181

STGkM when dynamic connected components is too strong for the task at hand. 182

3. Theorem 4.8: we demonstrate that our dynamic clustering method finds the 183

“correct” number of clusters, while static clustering cannot do so by Lemma 4.7. In 184

other words, we demonstrate where dynamic clustering with a unified 185

spatio-temporal objective is superior to simpler static methods. 186

4. Theorem 4.11: we demonstrate that our technique is robust to noise and is correct 187

in expectation. Admittedly, this result is relatively simple and we do not provide 188

a sensitivity analysis with respect to noise. 189
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4.1 Harmony with Connected Components 190

Although the clusters that STGkM generates are distinct from connected components, 191

we can find connected components under certain conditions, as presented in 192

Theorem 4.1; this result, with more extensive proofs and intermediate results, is simply 193

reproduced from [1] for context. Though our method may not be most efficient way to 194

find connected components (and there are other notions of connected components), our 195

theoretical result provides evidence that STGkM can find interesting partitions. 196

Definition 4.1 (Dynamic Connected Component). Vertices u, v are (dynamically) 197

connected if there exists a finite journey from u to v and from v to u over all time steps. 198

A set of vertices U (where U ⊆ V ) is a (dynamic) connected component if all vertices in 199

this set are connected and there is no vertex in V \ U that is connected to a vertex in U . 200

Theorem 4.1. Given a holding, non-stranding dynamic graph with k connected 201

components, the partition of vertices induced by the optimal solution to Expression 1 is 202

exactly the connected components given sufficient time. 203

Proof. See [1]. 204

4.2 More Granularity than Connected Components 205

Dynamic connectivity is a relatively strong requirement for two vertices. Indeed, if two 206

vertices become merely disconnected for just one time step, they cannot be dynamically 207

connected. With little noise (especially in real-world data), it is easy to generate 208

dynamic networks with no true non-trivial dynamic connected components; 209

alternatively, it is just as easy to find real-world data where the whole graph is one 210

dynamic connected component and we cannot distinguish between vertices. To 211

demonstrate this issue and how STGkM can handle such cases, we construct a special 212

type of dynamic network, see Definition 4.2. We then show that it has only one 213

dynamic connected component, but an intuitive notion of clusters. Lemma 4.2 shows 214

that using dynamic connected components would fail. Theorem 4.3 demonstrates our 215

ability to find the correct k clusters. 216

Definition 4.2 (Clique-cross-Clique). Let k be the “ground-truth” number of clusters 217

and n be the number of vertices per cluster. We have a total of N ≜ k × n vertices in V . 218

For ease of indexing, we let vi,j be the jth vertex in the ith cluster, i.e. i ∈ [k], j ∈ [n]. 219

We construct the following dynamic graph: (vi,j , vi′,j′) is in Et if and only if one of the 220

following conditions is satisfied: 221

1. self-loops, i.e. i = i′, j = j′ 222

2. the vertices are in the same cluster, i.e. i = i′, j ̸= j′ 223

3. the vertices have the same position in their respective clusters and it is their “turn” 224

to be connected, i.e. i ̸= i′, j = j′ and j = t mod n. 225

We will call such a dynamic graph G = (V,Et) a Clique-cross-Clique. 226

Lemma 4.2. A Clique-cross-Clique has one dynamic connected component, namely all 227

of its vertices. 228

Proof. This dynamic graph is holding and non-stranding; at every time step, the static 229

graph induced by Gt = (V,Et) is connected. Therefore, by Proposition 3.4 in [4], this 230

graph is dynamically connected. Graphs that are dynamically connected have, by 231

definition, one dynamic connected component. We note that intuitively, the idea is 232

simply that each of the k clusters is fully connected at all time steps and that between 233

any two clusters, there is always an edge. 234
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Theorem 4.3. Given a Clique-cross-Clique with k clusters, the partition of vertices 235

induced by the optimal solution to Expression 1 is exactly the k clusters with sufficient 236

time. 237

Proof. First, we will show the simple fact that vertices in the same cluster have a 238

smaller objective value than those in different clusters given sufficient time. We observe 239

that δt(u, v) = 1 for u, v in the same cluster for all time steps. If u, v are in different 240

clusters, then δt(u, v) ≥ 2 at least for k−1
k ∗ T time steps (this bound is conservative) 241

given sufficiently large T (specifically, T > 2k ). Therefore, for any W t
u,j > 0 that 242

W t
u,j · δt(u, v) < W t

u,j · δt(u, v′) where u, v are in the same cluster but u, v′ are in 243

distinct clusters. 244

Second, we will show that the optimal cluster assignment is always to assign one 245

entry of ct to each cluster; we proceed by contradiction. Assume that we have found an 246

optimal assignment ct,W ; select j ∈ [k] and assume that ct contains no vertices that are 247

in cluster j; let v be some vertex in this cluster. By the pigeonhole principle, there must 248

be two vertices in ct that are in the same cluster: call them u, u′ and let i, i′ be their 249

respective indices. We will show that we can switch one of these “duplicate” vertices to 250

v to decrease our objective value. Select some vertex w in the same cluster as u and w′
251

in the same cluster as v. Since δt(w, u) = δt(w, u′), we know that 252

(W t
w,i +W t

w,i′) · δt(w, u) = W t
w,i · δt(w, u) +W t

w,i′ · δt(w, u′). In other words, if we 253

remove u′ from cti′ , then we could simply update W t
w,i to take the value of W t

w,i +W t
w,i′ 254

without changing the objective value. Thus, if we set cti′ to v, then we observe that the 255

overall objective value has not changed for vertices in the same cluster as u. 256

However, if we set cti′ to v, by the fact that we showed in the beginning of this proof, 257

there would be an update to W that would indeed decrease the overall objective value. 258

For completeness, we observe that for a vertex that is not in the cluster with u nor with 259

v would remain unaffected. Such an assignment is thus not minimal, which is a 260

contradiction. 261

Remark 4.4. Note that when λ = γ = 1, then Expression 2 and, in fact, even our 262

single membership scheme also finds the optimal result. 263

4.3 More Powerful than Static Clustering 264

One common clustering technique with dynamic networks is to simply convert a 265

dynamic network into a static one. In particular, one easy way to “aggregate” a 266

dynamic network is to count the total number of dynamic edges between two vertices. 267

We can then perform traditional static clustering on such a static graph. However, this 268

method will certainly miss important dynamic properties. We construct an example in 269

Definition 4.3 and show that the total number of edges between vertices is uniform in 270

Lemma 4.7—and so static clustering will not be able to meaningfully distinguish 271

between vertices—but that STGkM will find the appropriate number of clusters, see 272

Theorem 4.8. This example is, in fact, a motivating example for STGkM and provides 273

some insight into how we can find induced clusters over time. 274

Definition 4.3 (Theseus Clique). Let U be the set of vertices u0, . . . , un−1 and W be 275

the set of vertices w0, . . . , wn−1. In this case, V ≜ U ∪W is our vertex set with 2n 276

vertices. Let r ∈ N be the “round” index and i ∈ N be the “slice” index; we 277

parameterizes our “time” index as t(r, i) = r ∗ n+ (i mod n). 278

We thus define a dynamic graph G = (V,Et) where 279

E0 ≜ {(u, u′) : u, u′ ∈ U} ∪ {(w,w′) : w,w′ ∈ W}

and then 280

Et ≜ Sr,i(Et−1)

March 18, 2024 8/21



where Sr,i swaps all edges involving the vertices ui, w(i+r) mod n. Formally, 281

(a, b) ∈ Sr,i(E) if and only if: 282

1. a /∈ P r,i, b /∈ P r,i and (a, b) ∈ E 283

2. a ∈ P r,i, b ∈ P r,i and (a, b) ∈ E 284

3. a ∈ P r,i, b /∈ P r,i and (a, b) ∈ E 285

4. a /∈ P r,i, b ∈ P r,i and (a, b) ∈ E 286

where P r,i = {ui, w(i+r) mod n} and • of an element • in P r,i is simply the other 287

element. 288

Lemma 4.5. The total number of edges at any given time in a Theseus Clique is 2n2. 289

Proof. We can proceed by induction. By construction E0 has 2n2 edges since it is the 290

union of two sets of size n2; also, note that, by construction, each vertex has degree n. 291

We assume that El has 2n2 edges and every vertex has degree n. By construction, 292

note that if an edge is in El+1, there is a corresponding edge in El and so we cannot 293

have more than 2n2 edges. Now, we observe that (a, b) ∈ El+1 when (a, b) ∈ El
294

a, b /∈ P , where P is the relevant swapping set. In these cases, we have clearly preserved 295

the number of edges and the degree of each vertex. Now, we note that if a ∈ P , then for 296

every edge that includes a in El, there is an edge that includes a in El+1; if there is an 297

edge that includes a in El, then there is an edge that includes a in El+1. In other 298

words, we have not changed the number of edges, nor the degree of any vertex. 299

Lemma 4.6. A Theseus Clique has two static connected components that are cliques at 300

any given time step. 301

Proof. We can proceed by induction. By construction, E0 has two cliques. We assume 302

that El has two cliques, say A,B. Let a, b ∈ P be distinct. If a, b are in the same clique, 303

then El+1 trivially preserves cliques. If a, b are in different cliques, say a ∈ A, b ∈ B, 304

then we observe that (a, b) /∈ El and so (a, b) /∈ El+1. Next, we note that (a, a′) /∈ El+1
305

for any a ∈ A: because (b, a) /∈ El (by our inductive hypothesis), then (a, a) /∈ El
306

because a = b. Symmetrically, this must be true for b. Finally, we need only observe 307

that by Lemma 4.5, since degree is preserved, then we must have maintained two 308

cliques. 309

Lemma 4.7. For a Theseus Clique with total time steps T some positive multiple of n2, 310

then the number of edges between any two vertices v, v′ ∈ V is T
2 . 311

Proof. Every vertex has constant degree by Lemma 4.5. Because of Lemma 4.6, we 312

know there are always two cliques. Now, we must show that for any pair of vertices, 313

they are in the same clique exactly T
2 time steps. At the end of each round, we observe 314

that our cliques are simply just U, V by construction. By construction, note that every 315

vertex in U and every vertex in V exactly once per n2 time steps. 316

Theorem 4.8. Given a Theseus Clique, the partition of vertices induced by the optimal 317

solution to Expression 1 with 2 clusters has lower objective value than with 1 cluster. 318

Proof. By construction, δt(u, v) is either 1 or ∞ if u, v are the in same clique at time t 319

or not, respectively. The objective value with 1 cluster is therefore ∞, since there exists 320

at least one vertex that is not in the same clique as the cluster center. There exists a 321

finite objective value with 2 clusters: namely, at each time step, simply select a cluster 322

center from each clique, which is well-defined by Lemma 4.6. 323
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4.4 Robust to Noise 324

Here, we use a similar setup as in Section 4.2, but we define a stochastic system, rather 325

than a deterministic one. Theorem 4.11 shows that we still find the correct number of 326

clusters in expectation. This result is somewhat weak, since we do not provide any 327

analysis on the distribution of the number of clusters, nor do we provide a sensitivity 328

analysis with respect to noise. That type of analysis is much more complicated, which 329

we hope to provide in future work. However, our result provides at least some 330

theoretical guarantees that STGkM is insensitive to noise, and we suspect that it is 331

actually quite robust to noise based on our empirical results. 332

Definition 4.4 (Random Clique-cross-Clique). Let k be the “ground-truth” number of 333

clusters and n be the number of vertices per cluster. We have a total of N ≜ k × n 334

vertices in V . For ease of indexing, we let vi,j be the jth vertex in the ith cluster, i.e. 335

i ∈ [k], j ∈ [n]. We construct the following random dynamic graph: P [(vi,j , vi′,j′) ∈ Et] 336

is 337
1 i = i′, j = j′

p i = i′, j ̸= j′

p′ i ̸= i′, j = j′

0 i ̸= i′, j ̸= j′

where 1 > p > p′ > 0. In other words, each edge at each time step is a Bernoulli random 338

variable and we further require that each is independent. We will call such a random 339

dynamic graph G = (V,Et) a Random Clique-cross-Clique. 340

Lemma 4.9. A Random Clique-cross-Clique is time-homogenous Markovian. 341

Proof. For distinct time steps t, t′ note that induced static graphs 342

Gt = (V,Et), Gt′ = (V,Et′) are independent by definition. Note that each edge is a 343

Bernoulli random variable with probability that does not depend on time, so Gt, Gt′ are 344

identically distributed. 345

Lemma 4.10. Given a Random Clique-cross-Clique with k clusters, p, p′, vertices 346

u, v, v′ such that u, v are in the same cluster and u, v′ are in distinct clusters, then 347

E[δt(u, v)] < E[δt(u, v′)]. 348

Proof. In the trivial case where u = v, then E[δt(u, v)] = 1; since there is non-zero 349

probability, namely 1− p′, that (u, v′) /∈ Et, then E[δt(u, v′)] > 1. We thus proceed by 350

assuming that u ̸= v. 351

First, let Xu,v represent the first t such that (u, v) ∈ Et6 and let Xu,v′ be the 352

analogous random variable for the edge u, v′. These are geometric random variables by 353

construction and have well-defined expectations. Since δt(u, v) represents the shortest 354

journey, we know that E[δt(u, v)] ≤ E[Xu,v] because we can only reduce the possible 355

shortest journey length by considering journeys that are not simply the edge between 356

u, v because we almost surely have self-loops. Therefore, E[δt(u, v)] is well-defined and, 357

by similar logic, so is E[δt(u, v′)]. 358

Next, we note that any journey between u, v is at least as likely to exist in the 359

dynamic graph as any equivalent journey between u, v′. Because our dynamic graph is 360

Markovian by Lemma 4.9, we can simply assume we are starting at time t = 1 without 361

loss of generality. Let j ≜ (u,w1, . . . , wl−1, v) be any journey of length l starting at 362

time step t where no wi is v or v′. Let j′ ≜ (u,w1, . . . , wl−1, v
′) be the related journey 363

of length l. We observe that P [(wl−1, v) ∈ El] ≥ P [(wl−1, v
′) ∈ El] by construction. 364

6Formally, Xu,v = min{t : (u, v) ∈ Et}

March 18, 2024 10/21



Since any journey can be written in this form, any journey between u, v is at least as 365

likely to exist in the dynamic graph as any journey between u, v′.7 366

Finally, we note that if any journey between u, v is at least as likely to exist as the 367

equivalent journey between u, v′, then E[δt(u, v)] ≤ E[δt(u, v′)] by definition of a 368

shortest journey. To wit, note that if a journey becomes more likely, then any case 369

where the shortest journey is longer than it becomes less likely; in other words, if a 370

journey j becomes more likely, then the probability that the shortest journey is longer 371

than j simply cannot increase. Now, we need only observe that by definition of our 372

random dynamic graphs that the edge (u, v) is strictly more likely than (u, v′), which 373

means that we can conclude that E[δt(u, v)] is strictly smaller than E[δt(u, v′)] since the 374

shortest journey has length 1. More precisely, note that 375

E[δt(u, v)] = 1p+ c(1− p),E[δt(u, v′)] = 1p′ + c(1− p′) where c, c′ represents the 376

expected shortest journey length conditioned on the edge (u, v), (u, v′) not existing. 377

Since we shows that c ≤ c′ and by definition p > p′, then E[δt(u, v)] < E[δt(u, v′)]. 378

Theorem 4.11. In expectation, given a Random Clique-cross-Clique with k clusters, 379

p, p′, the partition of vertices induced by the optimal solution to Expression 1 is exactly 380

the k clusters with sufficient time. 381

Proof. By Lemma 4.10, we know that E[δt(u, v)] < E[δt(u, v′)]. By linearity of 382

expectation, we can simply apply Theorem 4.3. 383

5 Experimental Results 384

5.1 Choosing k 385

Perhaps the greatest challenge in using a k-means-based approach for clustering is 386

determining the optimal number of clusters. With regard to classical k-means, two of 387

the most common methods for choosing k are the Elbow Method [30], wherein the sum 388

of square error of each cluster is calculated, and the value of k which results in the most 389

extreme difference (the “elbow”) is chosen and silhouette score [31,32], which provides a 390

measure of cluster cohesion versus separation. 391

In our previous work [1], we chose k using an approach similar to the Elbow Method 392

but specialized for multi-cluster membership. Unlike classical k-means where increasing 393

k results in points getting progressively closer to their centers, in mutli-membership 394

STGkM, increasing k is likely to cause vertices to be assigned to progressively more 395

clusters simultaneously, resulting in in a larger objective value. This allows us to search 396

for a local minimum, as opposed to the “elbow,” in our plot of k vs objective value. 397

In this work, because we choose to restrict vertices to single cluster membership, we 398

can no longer follow the same procedure. Since the “elbow” can be very difficult to 399

identify when using real data, we instead turn to the silhouette score [31, 32]. As a note, 400

silhouette score ranges between 0 and 1, and a higher silhouette score is better. For 401

each value of k, we calculate the average silhouette score over all time steps, and choose 402

the number of clusters that results in the maximum average silhouette score. We repeat 403

the experiments from [1] and show that they are consistent with our previous results. 404

7It is a tedious and technical matter to address the case where j includes v′ and j′ includes v. To
do this, we first observe that if v appeared in j before the last vertex, then it would not be a proper
journey of length l by definition. We then define a notion of journey equivalence where if j contains
any instances of v′, we swap these to v in j′ and we show that we have not inadvertently increase the
probability of j′. From here, we can conclude that our statement is still correct.
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Fig 2. Average silhouette score versus number of clusters on a synthetic dataset.

Timestep  0 Timestep  1 Timestep  2
Cluster Evolution

Fig 3. Three snapshots of a dynamic graph and the dynamic clustering as predicted by
STGkM. Cluster centroids are identified by enlarged nodes.

5.2 Synthetic Data 405

We begin by applying STGkM to a synthetic dataset, consisting of three clusters with 406

10 fully connected nodes in each cluster, tracked over 20 time steps. The result is a 407

dynamic graph with 30 nodes and 300 edges at each time t. At every time step we 408

randomly choose up to 30 edges to remove within clusters and up to 30 edges to add 409

between clusters. We run STGkM with λ = 1, γ = 1. Following the method for choosing 410

k described previously, we set k = 3. The selection process for choosing k is shown in 411

Figure 2, and a snapshot of the evolution of detected clusters is shown in Figure 3. As 412

expected, three communities persist throughout the duration of the simulation. 413

5.3 Detecting Political Parties 414

To demonstrate the utility of STGkM on a real-world dataset, we turn to the political 415

sphere. Communities naturally arise is politics, particularly in recent years where we 416

have witnessed polarization with political figures consistently voting along party lines. 417

Taking inspiration from [33], we form a dynamic graph based on 100 roll call votes from 418

the House of Representatives between June 21, 2023 and July 27, 2023. Each vote is a 419

time step, each representative is a node, and nodes are connected if they vote the same 420

way on a bill. Possible votes are “Yea”, “Nay”, and “Present”. If a representative does 421

not cast a vote, they have no connecting edges for that vote. The ground truth 422

communities are representative’s affiliated political parties. By running STGkM on the 423

roll call graph, we can identify the communities of representatives that vote similarly 424

and observe how those communities evolve over time. 425

We choose our maximum center drift to be λ = 1 and our time connectivity to be 426

γ = 5. Intuitively, we expect k = 2, corresponding to the two major US political parties, 427
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Fig 4. Average silhouette score versus number of clusters on the Roll Call dataset.

but in [1], when using multi-membership STGkM, our k selection process recommended 428

k = 3. Beyond separating Democrats and Republicans into separate long-term clusters, 429

we also identified an additional sub-cluster of three Democrats who very often vote 430

“Present” together, as opposed to the majority Democratic party vote. Here, when using 431

single-membership STGkM, we instead find k = 2 to be optimal, as shown in Figure 4. 432

Interestingly, however, if we set k = 3, we are still able to recover the same sub-cluster 433

of outlying Democrats, as in [1], up to stochasticity. 434

Figure 5 visualizes the similarity scores, as defined in Equation 3, between the 435

cluster assignment histories for each pair of representatives when single-membership 436

STGkM is run using k = 2 and k = 3. The rows and columns of the similarity matrices 437

are ordered according to the discovered long-term communities. In the left figure, these 438

clusters correspond to Republicans followed by Democrats, while in the right figure, the 439

three outlying Democrats are moved to the final three rows and columns of the matrix. 440

We observe a distinct color difference between these three rows and the remainder of the 441

matrix, demonstrating that the similarity between the outlying Democrats and 442

remaining Democrats is much lower. These figures agree with those generated in [1], 443

using multi-membership STGkM. 444

5.3.1 Runtime 445

The difference in choice of optimal k between multi- and single-membership STGkM is 446

intriguing. Perhaps restricting to single cluster membership leads to a loss of 447

information, because we are forced to make immediate decisions about vertices that are 448

equidistant from multiple centers. However, the computational speedup of restricting 449

the search space cannot be ignored. When running multi- and single- membership 450

STGkM on the Roll Call data 100 times each with k = 2, we find that the average 451

runtime of multi-membership STGkM is about 1.36 seconds, while the average runtime 452

of single-membership STGkM is .93 seconds, a speedup of 32%. We expect this 453

computational advantage to become even more pronounced as our networks grow. 454

5.4 Detecting Journal Communities 455

For our next experiment, we explore communities based on citations between scientific 456

journals. Using the Semantic Scholar API [34], we retrieve the 500 most cited papers for 457

each year between 2000 and 2024 that are returned by the query “dynamic network.” 458

We then form a connectivity matrix based on whether there is a citation from a paper 459

published in journal u to a paper published in journal v or vice versa in a given year. 460

We also keep track of how many times such citations occur with a weight function 461

defined as follows: for journals u, v with m total citations from papers in u to papers in 462
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Fig 5. Short term clustering similarity between nodes in the Roll Call dataset using
STGkM with γ = 5, λ = 1, and k = 2 on the left and k = 3 on the right.

v in year t, the s-journey between these two journals starting at time t will be scaled by 463

1
m . Our final dataset tracks 199 journals over 24 years. The resulting connectivity 464

matrix is sparse, with only 2.5% of entries containing nonzero values. 465

We set our maximum center drift and time connectivity to the default values, λ = 1 466

and γ = 1. When searching for an optimal number of clusters between 2 and 20, we 467

repeatedly return a value close to the top of the range. For example, Figure 6 shows a 468

situation where the optimal choice is k = 18, and we report results for this parameter 469

choice. Figure 7 captures the short term cluster similarity scores between the cluster 470

assignment histories for each pair of journals. The rows and columns of the similarity 471

matrix are ordered according to the long-term clusters discovered by Phase 2 of STGkM. 472

While we observe strong similarity within long-term clusters, we also observe a coarse, 473

macro-structure in the similarity matrix. For instance, cluster 0, which contains 56% of 474

journals covering a diverse range of topics, maintains above average similarity with most 475

clusters, other than cluster 1, which has a distinct general biology focus. We also see 476

strong similarities between pairs of long term-clusters, such as 1 and 2. Upon further 477

investigation, these contain journals focused on the closely related topics of general 478

biology and neuroscience, respectively. We look to the evolving contents of our clusters 479

for further explanation. 480

Figure 8 tracks the four most common journals in a subset of our 18 dynamic 481

clusters. We note no fewer than four clusters corresponding to biological topics, with 482

separate clusters for chemistry, molecular biology, cells, and neuroscience. Other topic 483

clusters cover communications, neural networks, operations research and 484

wireless/mobile networks, and computer vision. The observation that journals covering 485

similar topics are clustered together gives us confidence in STGkM’s results. 486

One of the advantages of STGkM is that we can track a journal’s cluster 487

membership over time. Unsurprisingly, given the overlap in topic coverage between 488

clusters, most journals’ memberships change often. In fact, on average, a journal is a 489

member of 5.51 clusters. Because the majority of journals interact with many clusters, 490

instead of distinct boundaries, we maintain loose similarities between our long-term 491

clusters, which helps explain the hierarchical structure in Figure 7. Digging further into 492

which journals switch clusters most often, we find that arXiv.org, with it’s general 493

focus belongs to 10 different clusters at least once, while a highly specialized journal like 494

IEEE Transactions on Geoscience and Remote Sensing never switches 495
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Fig 6. Average silhouette score versus number of clusters on the Semantic Scholar
dataset.

membership. Perhaps, there is a loose relationship between the breadth of topics that a 496

given journal covers and the stability of a journal’s cluster assignment history. 497

5.5 Detecting Clusters of Subreddits 498

For our final experiment, we seek to find clusters of subreddits based on posts over a 2.5 499

year period between January 2014 and April 2017 [35]. We break the data into monthly 500

windows and restrict to subreddits with at least 20 posts in the 2.5 year period. We 501

define a connection between subreddit u and subreddit v if there is a hyperlink pointing 502

to v present in the title of post u or vice versa. We use the same weight function as 503

with the Semantic Scholar data, i.e. if subreddits link to one another m times within 504

time period t, the s-journey between those two nodes starting at time t will be scaled by 505

1
m . We provide two different sets of analysis based on whether the sentiment between 506

the subreddits is positive or negative. The resulting positive sentiment connectivity 507

matrix tracks the interactions of 1619 subreddits, while the negative sentiment 508

connectivity matrix tracks the interactions of 115 subreddits, both over 41 months. 509

For both sets of analyses, we run STGkM with the default values λ = 1 and γ = 1. 510

For the positive sentiment subreddits, our k selection process repeatedly recommends 511

values of k towards the top end of our search range, and we report results for k = 19. 512

For the negative sentiment subreddits, our k selection process consistently settles on 513

k = 2. These processes are shown in Figure 9. One observation of note is that whereas 514

the average silhouette scores for the negative sentiment subreddits are similar to those 515

in previous experiments, the scores for positive sentiment subreddits are extremely low, 516

suggesting that at most time steps, nodes are very difficult to separate into clusters. 517

This hypothesis is strengthened by Figure 10, which shows the short term cluster 518

similarity scores for both the positive and negative sentiment Reddit data, ordered by 519

long-term cluster membership. Almost all positive sentiment subreddits belong to one 520

long-term cluster, while negative sentiment subreddits are contained to two distinct 521

long-term clusters. Since STGkM tracks both short- and long-term interactions between 522

nodes, we turn to the content of our dynamic clusters for an explanation. 523

The first row of Figure 11 shows the four most common positive sentiment 524

subreddits over time in a selection of four clusters. The first cluster pertains to negative 525

Donald Trump content, the second to operating systems and coding, the third to 526

conservative political content, and the fourth to sports. The second row of Figure 11 527

shows the ten most common subreddits over time in our two dynamic negative 528

sentiment clusters. The contents of the first cluster are primarily political, as opposed 529

to the contents of the second, even though there is some overlap. For instance, “btc” 530

(bitcoin) is one of the most popular subreddits in both. These results suggest that in 531
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Fig 7. Short term clustering similarity between nodes in the Semantic Scholar dataset
using STGkM with γ = 1, λ = 1, and k = 18.

Fig 8. Four most common journals for a selection of clusters from the Semantic Scholar
dataset using STGkM with γ = 1, λ = 1, and k = 18. The most common journals in
each cluster tend to cover similar topics.
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Fig 9. Average silhouette score verses number of clusters on the Reddit dataset for
subreddits with positive sentiment on the left and negative sentiment on the right.

Fig 10. Short term clustering similarity between nodes in the Reddit dataset using
STGkM with λ = 1, γ = 1, and k = 19 on positive sentiment data on the left and λ = 1,
γ = 1, and k = 2 on negative sentiment data on the right.

both experiments, STGkM appropriately separates subreddits of different topics. The 532

behaviour of our long-term clusters in Figure 10 can be explained by how often 533

subreddits switch clusters. n average, positive sentiment subreddits belong to 5.88 534

clusters. In contrast, the cluster membership of negative sentiment subreddits is much 535

more stable. The idea that negative sentiment is much more polarizing than positive 536

sentiment is well studied [3]. Therefore, our observation that posts containing negative 537

sentiment towards similar topics have much more stable clustering histories than posts 538

containing positive content is unsurprising. 539

6 Conclusion 540

In [1], we introduced spatiotemporal graph k-means (STGkM) for community detection 541

by vertex clustering on dynamic graphs. The approach is unified over space and time 542

and gives us the ability to analyze both the short- and long-term partitions of graph 543

vertices, monitor the multi-scale relationships between communities, and has just three 544

explainable parameters, only one of which is required. We provide a principled approach 545

to estimating the required parameter: the number of clusters k. In this work, we 546

improve the runtime and thereby the feasibility of running STGkM on larger networks 547

by embracing a new relaxation and carry out experiments on one synthetic and three 548
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Fig 11. Top row: Four most common subreddits for a selection of clusters from the
positive sentiment Reddit data using STGkM with γ = 1, λ = 1, and k = 19. Bottom
row: Ten most common subreddits for the two dynamic clusters from the negative
sentiment Reddit data using STGkM with γ = 1, λ = 1, and k = 2.

real-world datasets to empirically validate performance. 549

We also extend our theoretical guarantees and explain clustering behavior under 550

certain conditions. While in our conference paper, we show that the partition induced 551

by STGkM is identical to connected components in certain cases, in this work, we 552

distinguish the cases where we can find sensible clusters that dynamic connected 553

components cannot. We also provide a result that demonstrates why dynamic clustering 554

may find better partitions than a static clustering technique; in particular, static 555

clustering methods that aggregate or “average” behavior and then cluster the resulting 556

graph cannot capture important dynamics. Finally, we give an initial result 557

demonstrating that STGkM is robust to noise. 558

In all of our experiments, we find that STGkM is able to detect informative clusters 559

and make interesting conclusions about trends in the datasets, such as detecting 560

outlying political activity, the extent of similarity between subtopics of scientific 561

journals, and supporting evidence of polarization in negative versus positive sentiment 562

social media posts. These mathematical results align with the existing literature in each 563

task’s respective area of study, which provides further confidence that STGkM is finding 564

“useful” clusters for real applications. These conclusions would not be possible without 565

STGkM’s ability to break down the multi-scale relationships between graph nodes. 566

One direction for further study is to extend STGkM to the online case. Because 567

clustering is carried out at each time step independently, relying only on the centers at 568

the previous time step to seed the current choice, it is feasible to transform STGkM to 569

an online algorithm. The main challenges will be in updating s-journeys and deciding 570

how many time steps of a dynamic graph to maintain and collect between cluster 571

updates, but we leave this for future work. Inspired by the results of our experiments on 572

the Semantic Scholar and Reddit data, another potential extension is a hierarchical 573

version of STGkM. In the Semantic Scholar experiments, we already saw promising 574

hierarchical structure within the short term cluster similarity matrix. On the other 575

March 18, 2024 18/21



hand, in the Reddit experiments, we observed one massive long-term cluster, but 576

dynamic short-term clusters with distinct topic focuses. We hypothesize that by 577

intelligently applying STGkM to smaller and smaller subsets of data, we could more 578

clearly extract the evident hierarchical relationships in the Semantic Scholar data and 579

perhaps further break down the mega-cluster in the Reddit data. 580

In our future work, we seek to improve the efficiency of STGkM, both in practice 581

and in theory. As STGkM is applied to larger datasets, further approximation strategies 582

will be necessary to ensure feasibility. We would also like to provide guidance on the 583

quality and convergence of our approximation strategies. The theoretical guarantees in 584

this paper are only correct under narrow conditions, so we would like to provide more 585

contexts in which clustering is assured to work correctly. Finally, we would like to 586

provide much more precise results in the stochastic setting with more specific bounds on 587

STGkM’s output based on noise. We will also explore online extensions of STGkM, 588

where we explore dynamic graphs in real-time. We intend to leverage STGkM in a 589

variety of applications and we hope that it becomes an interesting tool in the study and 590

analysis of various network-based data for data practitioners. 591
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