®

Check for
updates

A Novel Method for Vertex Clustering
in Dynamic Networks

Devavrat Vivek Dabke!®) and Olga Dorabiala?

! Princeton University, Princeton, USA
ddabke@princeton.edu
2 University of Washington, Washington, USA
0lgad400Q@uw.edu

Abstract. In this paper, we introduce spatiotemporal graph k-means
(STGEKM), a novel, unsupervised method to cluster vertices within
a dynamic network. Drawing inspiration from traditional k-means,
STGKM finds both short-term dynamic clusters and a “long-lived” parti-
tioning of vertices within a network whose topology is evolving over time.
We provide an exposition of the algorithm, illuminate its operation on
synthetic data, and apply it to detect political parties from a dynamic
network of voting data in the United States House of Representatives.
One of the main advantages of STGEKM is that it has only one required
parameter, namely k; we therefore include an analysis of the range of
this parameter and guidance on selecting its optimal value. We also give
certain theoretical guarantees about the correctness of our algorithm.
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1 Introduction

Dynamic graphs are becoming increasingly prevalent mathematical structures
as we collect more detailed data on the world around us. Though graphs have
traditionally been studied as static objects, the dynamic setting better captures
systems that evolve over time. Also called “time-varying” or spatiotemporal
graphs, they extend static graphs by permitting edges to change over time, and
they inherently reflect many systems, e.g., road networks, online communities,
and epidemic spread. Since they are much less understood than their static
counterparts, they pose an exciting and rich area of study.

Much of the literature on dynamic graphs focuses on extending well-known
concepts from the static case like connectivity [15], optimal routing [6], induced
dynamical systems [8], and more. Our work fits into this foundational litera-
ture by extending the notion of vertex clustering for the purpose of community
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detection. Graph clustering is a fundamental tool for network analysis, with
applications across the social and natural sciences, and we seek to bring this
tool to the dynamic setting. In dynamic graph clustering, we find a partition of
graph vertices that takes into account both spatial similarity—so that there are
many edges within a cluster and relatively few between clusters—and temporal
similarity, so clusters stay consistent over time. These partitions help us detect
latent community structures.

In this paper, we propose a method we call spatiotemporal graph k-means
(STGKM) that is able to track the multi-scale relationships between graph ver-
tices. STGEM applies a two-phase clustering approach, wherein the first phase
outputs an assignment for each vertex at every time step and the second phase
produces a single, long-term partition of vertices based on historical cluster mem-
bership. STGEM identifies communities of interest and automatically tracks their
evolution over time. To validate our method, we provide certain theoretical guar-
antees and showcase the utility of STGEM on synthetic and real-world datasets.

2 Related Work

In static graphs, vertex clustering has a broad literature with interdisciplinary
interest and there has been a push to extend these results to the dynamic setting.
Most approaches to dynamic community detection find clusters independently
at each time step and then use aggregation to successively infer relationships
between partitions [11]. These methods are often unable to achieve temporal
smoothness and inevitably do not capture the dynamics of the network [12].
Another subset of methods first constructs a single coupling graph that sum-
marizes the temporal properties of the dynamic network and then runs a classic
community detection method on this graph [22]. As with aggregation, the use of
coupling graphs results in a loss of temporal information.

Evolutionary clustering addresses this shortcoming through a unified frame-
work, where clusters are iteratively formed based on current network structure
and previous partitions. A cost function regulates the tradeoff between cluster
quality at each snapshot and cluster consistency [4]. This framework has been
successfully adopted and refined [5,19]. Other lines of research extend static com-
munity detection using online algorithms [23], machine learning [24], or systems-
based approximation algorithms [9]. These papers leverage diverse methods to
contend with the sometimes staggering size of dynamic networks.

Our method, STGEM, develops a unified framework akin to, but distinct
from, evolutionary clustering [4]. STGEKM, achieves temporal smoothness by
restricting the search space of new cluster centers based on temporal reacha-
bility from previous centers. In addition, our method goes further than existing
techniques to also extract long-lived communities of vertices based on historical
dynamic cluster membership. STGkM is the graph analogue to our previously
developed point-based method [10]. We first introduced a notion of STGAM in
an extended abstract with some preliminary evidence of its effectiveness, but we
have since refined our approach and this paper provides our complete results [7].
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Finally, we note that there are numerous methods to group vertices within a
dynamic network, each with its own motivation, challenges, and rich literature.
Our method of vertex partitioning prioritizes long-term stable connections and
our main theoretical result highlights the relationship to the distinct concept
of connected components. However, there are many other interesting notions of
connectivity [3] with variants in stochastic settings [1] along with other related
problems, like motif detection [13], centrality measurement [2,14,18,25], and
even novel frameworks for capturing properties of dynamic networks [17].

3 Spatiotemporal Graph k-means (STGkM)

Our goal is to partition a vertex set given a dynamic graph. In STGEM, we
construct a partition by finding central nodes to represent each cluster and then
assigning each remaining vertex based on its closest central node.! Just as with k-
means, we define the problem of finding good clusters as a minimization problem;
our novel objective has a unified formulation over space and time that predicts
a partition for each vertex at every time step. After pre-processing, STGEM
consists of two phases: in a single pass of Phase 1, the algorithm outputs vertex
membership and dynamic cluster center journeys; in Phase 2, we extract the
long-lived communities from the graph.

Setup

As input data, we need: a (finite) vertex set V, a (finite) time set T C N, a
dynamic graph G = (V, E*);c1 where E* € V x V| and an optional non-negative
cost function w® : V x V — R for all t € T. Our parameters are k € N, the
number of clusters, and—optionally—A € N, the maximum cluster center drift,
and v € Z>g, the drift time window.

Pre-processing

For all pairs of vertices across time, we compute and store the s-journey 9,
see [15] for details. The value of 6(u, v) is the length of the shortest journey (i.e.
dynamic path) starting at vertex w at time ¢ and ending at vertex v. If no such
journey exists, it assigns +o0o. Thought not a true metric (it is missing symmetry
and coincidence), this function has the same purpose as a distance in classical
k-means.? We also define the related true metric 6*(u,v) £ §*(u,v) + 6*(v,u)
with the additional convention that &*(u,u) = 0.

Phase 1
Given a fixed value of k, the first phase of STGEM selects a set of k vertices to
serve as cluster centers and assigns each vertex to a cluster at every time step.

! Our approach is perhaps more analogous to k-medoids, but in a network context,
the distinction between k-means and k-medoids is not obvious.

2 If no weight functions are provided or if the weight functions only output natural
numbers, then § will assign only natural numbers.
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Vertices have the flexibility to switch cluster membership at every time step, but
cluster centers are constrained by drift parameters A and ~.

Natural Objective. The natural extension of k-means would be to optimize
the objective function in Expression 1:

BN D) DI DRUSFRLR ) 1)
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where we minimize over cluster centers C and assignment tensors V. Formally,
C is the set of all sequences of length |T| where each element is an ordered subset
of V with k elements; W £ {0, 1}/TI*IVIXF such that > jelk] W ;> 1. Note that
we allow vertices to belong to multiple clusters simultaneously, and each vertex
is assigned to at least one cluster at every time step.

Objective with Regularization. Optimizing Expression 1 is NP-hard®, so
we instead iteratively optimize a modified objective function that restricts the
search space. We begin by choosing initial cluster centers ¢ to be the nodes that
are most closely connected to all others at ty. When there are ties, we sample
randomly. OlgAt each time ¢ henceforth, we assume that we have chosen optimal
cluster centers ¢® for all s < ¢, and we minimize Expression 2.

m{i/‘gl Z Z Wi’j -5t(u,c§-)
c,

u€V jelk] (2)
such that 5’5_‘1(0371,0;-) <A wherel <¢g<~yand1<j<k

The constraint in Expression 2 imposes that the center of a given cluster can
only switch from vertex u to vertex v if the distance between them is no more
than A for the previous « time steps. This regularization serves two purposes:
first, it associates dynamic clusters between time steps; second, it restricts the
search space for cluster centers®. As we decrease \ or increase v, we decrease the
number of potential centers at time ¢ and enforce stricter cluster consistency;
see Fig. 1 for an example.

In practice, we update the center of a cluster only if the objective is improved.
When we encounter the case where selecting new cluster centers is infeasible, we
update clusters individually instead of jointly. Our algorithm terminates until
either the clusters stabilize or we reach a maximum number of iterations.

3 To see why, observe that k-medoids is NP-hard [20].
4 In the worst case, e.g. when the graph is complete at every time step, optimizing
this objective is still NP-hard, but in practice, it makes STGkM tractable.
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Cluster Center Selection Process at Time t
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Fig. 1. At time t, ¢}, is chosen based on cf)_l. The drift time window 7 determines for
how many previous time steps centers must be within maximum drift A of one another.
The objective in Expression 2 is evaluated for all potential cluster centers; the center
that minimizes the objective is chosen.

Phase 2
By building on Phase 1, Phase 2 of STGEM aims to identify the long-lived
partitions of graph vertices. The output is an assignment of communities con-
taining vertices with the most similar spatiotemporal characteristics. Intuitively,
we expect vertices with similar partitioning histories to belong to the same per-
sisting community in the long run.

Recall that the Hamming distance is defined by counting the number of
entries where two matrices disagree: H(u,v) = |{(t, k) : W, # Wy} Using
this distance, we define similarity sim(u,v) as

H(u,v)

sim(u,v) 21—

This definition gives us a powerful way to compare all pairs of vertices. Since
sim(-,-) is compatible with traditional clustering techniques, we input it to
agglomerative clustering. We then output the resulting partition to get a clus-
tering of the vertices based on long-lived communities as desired.

4 Results

4.1 Algorithmic Analysis

The main feasibility issue with STGkKM arises from finding new cluster centers
at every time step. Evaluating all possible subsets of size k of |V is NP-hard.
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The objective in Expression 2 does not obviate this possibility in the worst case,
even though in practice, the added regularization results in a sufficiently fast
algorithm. There are other strategies we could deploy to minimize our objective
(e.g. greedy algorithms, subsampling, further constraints on cluster center drift)
that may be theoretically efficient, but we did not explore these possibilities
in detail, since our chosen strategy works in practice. Also, we do not provide
formal guarantees on approximation quality for Expression 2.

4.2 Connected Components

Although the clusters that STGEM generates are distinct from connected compo-
nents, we can find connected components under certain conditions, as presented
in Theorem 1. Though our method may not be most efficient way to find con-
nected components (and there are other notions of connected components), our
theoretical result provides evidence that STGAM can find interesting partitions.

Definition 1 (Dynamic Connected Component). Vertices u,v are
(dynamically) connected if there exists a finite journey from u to v and from
v to u over all time steps. A set of vertices U (where U C V) is a (dynamic)
connected component if all vertices in this set are connected and there is no
vertex in V \ U that is connected to a vertex in U.

Lemma 1. For two vertices u,v in distinct connected components, there exists
some time step to such that 6% (u,v) = co.

Proof. By definition, if u,v are not connected, then there must be some time
step to at which there is no finite journey from w to v or v to w. a

Definition 2 (Self-Connected). A dynamic network is self-connected if each
vertex is connected to itself.

Lemma 2. In a self-connected dynamic network, connectivity is an equivalence
relation and the connected components are the respective equivalence classes.

Proof. By construction, connectivity is symmetric. By self-connection, connec-
tivity is reflexive. Connectivity is also transitive: if vertex u is connected to v
and v is connected to w, then there exists a journey from w to w via v for all
time steps. By construction, each connected component only contains vertices
that are connected and no other vertices, so it is an equivalence class. O

We now make use of two further concepts: a non-stranding dynamic graph is
one where for every time step, every vertex has at least one edge, and holding,
where each vertex has a self-loop at every time step [15]. We introduce Lemma 3,
which is related to (but distinct from) Proposition 3.5 in [15].

Lemma 3. For two vertices u,v in distinct connected components in a mon-
stranding, holding dynamic network, there erists some time step to such that
8" (u,v) =00 ¥ t > to.
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Proof. We proceed by induction. For our base case, by Lemma 1, there exists
to such that 6% (u,v) = oo. Therefore, either §% (u,v) = oo or §% (v, u) = 00, 50
(without loss of generality) we assume 6% (u,v) = oo.

For our inductive step, we will show that if for some ¢ that 6¢(u,v) = oo,
then §'*1(u,v) = co. By holding 6*(u,u) = 1 and so §(u,v) < 1+ 81 (u,v),
which immediately implies that 6***(u,v) = co. By induction, for all t > to,
8t (u,v) = oo and so §*(u,v) = oo as desired. O

Theorem 1. Given a holding, non-stranding dynamic graph with k connected
components, the partition of vertices induced by the optimal solution to Ezrpres-
sion 1 is exactly the connected components given sufficient time.

Proof. For every pair of vertices u,v that are not connected, there exists some
time step such that 5t(u, v) = oo for all t > t,, , by Lemma 3. For a pair of vertices
u, v, denote t,, ,, to be the minimum such time step if they are disconnected or 0
otherwise. Let t* = max{#t,,}. This notion is well-defined because every vertex
is in a connected component at least with itself by Lemma 2.

For all ¢ such that ¢t > t*, note that 6*(u,v) = oo if and only if u,v are in
different connected components. If two entries in ¢’ are in the same connected
component, then there must be one vertex v that is not connected to any cluster
center in ¢! by the pigeonhole principle and thus §*(v, cé) = oo for all j. At least
one entry in Wlf’. must be 1 by construction and thus

3 0 ) =

J€E(k]

Conversely, we can select vertices ¢; with j € [k] such that each is in a distinct
connected component. Now, construct W* such that Wy ; is 1 when u and ¢; are
connected and is 0 otherwise. With this construction, the sum below is finite:

ZZ 170 (s 5)

ueV jelk

and this constructed W* is optimal. For two connected vertices u, v, Wy , = Wy ,

Il?lk For two dlsconnected vertices x, w, there

exists at least one index j such that Wt # Wi j 8o sim(z,w) < € + 21 With
sufficiently large |T|, we will correctly separate these clusters. a

so sim(u,v) > 1 — € where € =
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Objective Value vs. Number of Clusters
(O oOptimal Objective Value

Cluster Evolution

Time 2

Objective Function Value
IS
&
3

300

2 10

4 6 8

Number of Clusters k (b) Three snapshots of a dynamic graph
(a) Objective function value versus and the dynamic clustering as predicted by
number of clusters on a synthetic STGEM. Cluster centroids are identified by
dataset. enlarged nodes.

Fig. 2. STGEM on a synthetic dataset, consisting of three ground-truth clusters.

4.3 Experimental Insights

Choosing k. Perhaps the greatest challenge in using a k-means-based approach
for clustering is determining the optimal number of clusters k. With regard to
classical k-means, one of the most common methods for choosing & is the Elbow
Method [16], wherein the sum of square error of each cluster is calculated, and
the value of k which results in the most extreme difference (the elbow) is chosen.
We employ an approach similar to the Elbow Method for STGEM.

We calculate the value of Expression 2 for every value of k being considered,
and seek the value of k£ for which the objective is minimized. It is important
to note, that as opposed to the Elbow Method, which finds the most extreme
difference in objective values, we seek the minimal value. The reason for this is
that we allow for vertices to belong to multiple clusters simultaneously. Unlike
classical k-means where increasing k results in points getting progressively closer
to their centers, in STGEM, increasing k is likely to cause vertices to be assigned
to progressively more clusters simultaneously. Consider the case of n vertices in
a clique: cluster centers will be assigned only to their own cluster, whereas every
other vertex will be assigned to all clusters. The value of Expression 2 is thus
(n — k)k. Restricting to small k, the objective value is minimized when k = 1
and increases as k increases. In a clique, we would expect k = 1.

Synthetic Data. We begin by applying STGEM to a synthetic dataset, con-
sisting of three clusters with 10 fully connected nodes in each cluster, tracked
over 20 time steps. The result is a dynamic graph with 30 nodes and 300 edges
at each time ¢. At every time step we randomly choose up to 30 edges to remove
within clusters and up to 30 edges to add between clusters. We run STGAM
with A = 1, v = 1. Following the method for choosing k described previously,
we set £k = 3. The selection process for choosing £ is shown in Fig.2a, and a
snapshot of the evolution of detected clusters is shown in Fig. 2b. As expected,
three communities persist throughout the duration of the simulation.
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Objective Value vs. Number of Clusters

80000{ (O Optimal Objective Value Roll Call Data Cluster Evolution
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N:mber of Clsusters k
(a) Objective function value versus (b) Snapshots of the dynamic graph created
number of clusters on the Roll Call by the Roll Call dataset. Cluster centroids
dataset. are identified by enlarged nodes.

Fig. 3. STGEKM on the Roll Call dataset.

Detecting Political Parties. To demonstrate the utility of STGKM on a
larger, real-world dataset, we turn to politics. Communities naturally arise is
politics, particularly in recent years where we have witnessed polarization with
political figures consistently voting along party lines. Taking inspiration from
[21], we form a dynamic graph based on 100 roll call votes from the House
of Representatives between June 21, 2023 and July 27, 2023. Each vote is a
time step, each representative is a node, and nodes are connected if they vote
the same way on a bill. Possible votes are “Yea”, “Nay”, and “Present”. If a
representative does not cast a vote, they have no connecting edges for that vote.
The ground truth communities are representative’s affiliated political parties.
By running STGEM on the roll call graph, we can identify the communities of
representatives that vote similarly and observe how those communities evolve
over time.

We choose our maximum center drift to be A = 1 and our time connec-
tivity to be v = 5. Intuitively, we expect k = 2, but our k selection process
recommends k = 3, as seen in Fig. 3a. We find that when we run STGKM with
k = 2, we correctly separate Democrats and Republicans in our long term clus-
ters, but interestingly enough, when we run STGEM with k& = 3, we additionally
find a sub-community of three Democrats. Upon further investigation, we find
that these three Democrats, Rep. Joaquin Castro, Rep. Emanuel Cleaver, and
Rep. Michael Kelly, very often vote “Present” together, as opposed to the major-
ity Democratic party vote. The evolution of our dynamic clusters is visualized in
Fig. 3b. We observe two large persistent clusters in red and blue. We also see how
in some votes, such as #20 where most representatives vote identically, almost
all nodes are assigned to one cluster. The third, green cluster often contains the
three outlying Democrats, as well as other “Present” voters over various votes.
Figures4a and 4b visualize the similarity scores, as defined in Eq.3, between
the cluster assignment histories for each pair of representatives. The rows and
columns of the similarity matrix are ordered according to the long-term commu-
nities discovered by STGEM. In Fig. 4a, these clusters correspond to Republicans
followed by Democrats, while in Fig. 4b, the three outlying Democrats are moved
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Roll Call Data Roll Call Data
Short Term Cluster Similarity Scores k=2 1.0 Short Term Cluster Similarity Scores k=3

Republicans
Republicans

Democrats

Outlying Democrats
Democrats

(a) Short term clustering similarity be- (b) Short term clustering similarity be-
tween nodes in the Roll Call dataset using tween nodes in the Roll Call dataset using
STGKM with v =5, A=1, and k = 2. STGEM with v =5, A =1, and k = 3.

Fig. 4. Similarity matrices of the short term clustering similarity between nodes in
the Roll Call dataset. Rows and columns of the matrices are organized by detected
long-term community membership.

to the final three rows and columns of the matrix. We observe a distinct color dif-
ference between these three rows and the remainder of the matrix, demonstrating
that the similarity between the outlying Democrats and remaining Democrats
is much lower.

5 Conclusion

We introduce spatiotemporal graph k-means (STGAM) for community detection
by vertex clustering on dynamic graphs. This approach is unified over space and
time and gives us the ability to analyze both the short- and long-term partitions
of graph vertices, monitor the multi-scale relationships between communities,
and has just three explainable parameters, only one of which is required. We
provide a principled approach to estimating the required parameter: the number
of clusters k. We also state some theoretical guarantees that explain clustering
behavior under certain conditions. Finally, we carry out experiments on both a
synthetic and real world dataset to empirically validate STGEM.

In our future work, we seek to improve the efficiency of STGkM, both in
practice and in theory. As STGEM is applied to larger datasets, further approxi-
mation strategies will be necessary to ensure feasibility. We would like to provide
guidance on the quality and convergence of our approximation strategies. The
theoretical guarantees in this paper are only correct under narrow conditions, so
we would like to provide more contexts in which clustering is assured to work
correctly. We will also explore online extensions of STGEM, where we explore
dynamic graphs in real-time. Finally, we seek a characterization of the expected
properties of STGEM in a stochastic setting with the presence of noise.
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