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Introduction
Dynamic graphs are becoming increasingly prevalent mathematical structures as we

collect more detailed data on the world around us. Though graphs have traditionally

been studied as static objects, the dynamic setting better captures the many systems

that evolve over time. Also called “time-varying” or spatiotemporal graphs, they

extend static graphs by permitting edges to change over time, and they inherently

reflect many systems, e.g., road networks, online communities, and epidemic spread.

Since they are much less understood than their static counterparts, they pose an

exciting and rich area of study.

Much of the literature on dynamic graphs focuses on extending well-known con-

cepts from the static case like connectivity [1], optimal routing [2], induced dynami-

cal systems [3], and more. Our work fits into this foundational literature by extend-

ing the notion of vertex clustering for the purpose of community detection. Graph

clustering is a fundamental tool for network analysis, with applications across the

social and natural sciences, and we seek to bring this tool to the dynamic setting.

In dynamic graph clustering, we find a partition of graph vertices that takes into

account both spatial similarity—so that there are many edges within a cluster and

relatively few between clusters—and temporal similarity so clusters stay consistent

over time. These partitions help us detect latent community structures.

In this paper, we propose a method we call spatio-temporal graph k-means

(STGkM) that is able to track the multi-scale relationships between graph vertices.

STGkM applies a two-phase clustering approach, wherein the first phase outputs an

assignment for each vertex at every time step and the second phase produces a sin-

gle, long-term partition of vertices based on historical cluster membership. STGkM

allows us to identify communities of interest, as well as automatically track their

evolution over time. To validate our method, we provide certain theoretical guar-

antees and showcase the utility of STGkM on synthetic and real-world datasets.

Related Work
The closest related work directly extends static techniques using online algo-

rithms [4] or using machine learning [5]. Both of these papers make important

contributions: dynamic graphs can be staggeringly large structures and an online

algorithm can assist with parsing them, especially if data is collected in real time;

graph neural networks are also an important and active area of research and inter-

secting them with recurrent networks is a natural extension of deep learning tech-

niques. Other approaches, which use aggregation to associate clustering snapshots

from static methods, are unable to achieve temporal smoothness and inevitably do
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not capture the dynamics of the network [6]. Therefore, we seek a clustering method

that is unified in both space and time.

Spatiotemporal Graph k-means
Given a dynamic graph, we want to perform community detection on its nodes.

More precisely, given a set of vertices, we want to cluster or partition them in a

way that leverages an underlying dynamic network structure. Mathematically, we

say that we have a vertex set V of size n and a dynamic graph G = (V,Et)t∈T

where Et ∈ V × V . This graph is indexed with respect to some ordered time set T,
e.g., some subset of the natural numbers. We want to find a partition of the vertex

set V = (Vj)j∈[k] such that Vj ⊆ V , no subset in the partition is empty, and the

subsets are disjoint. Note: we use the notation [c] to mean the set {1, . . . , c} ⊂ N
throughout this paper.

In STGkM, we define partitions by finding central nodes. More precisely, we select

k nodes that each represent a cluster and then assign the remaining vertices to the

“closest” cluster under some notion of distance. Just as with k-means, we can define

the problem of finding good clusters as a minimization problem; our novel objective

has a unified formulation over space and time that predicts a partition for each

vertex at every time step. By building upon the k-means algorithm, cluster centers

are explicitly tracked and there are fewer parameters to tune, in contrast to other

community detection models. We have a two-phase algorithm: in a single pass of

Phase 1, vertex membership and dynamic cluster center journeys are output; in

Phase 2, we extract the long-lived communities from the graph.

Phase 1

The first phase of STGkM assigns each vertex to a partition at every time step.

Vertices have the flexibility to change clusters between time steps. In particular, we

write ctj ∈ V to be the node that is the center of cluster j at time t. Our objective

is shown in Equation (1).

min
c,W

∑
u∈V

∑
j∈[k]

∑
t

[
W t

u,j · δt(u, ctj) +
λ

n
· δt

(
ctj , c

t+1
j

)]
(1)

The objective in Equation (1) has two parts. The first term forces vertices to be

assigned to closer cluster centers by penalizing the distance between a vertex and

its assigned cluster. The second term penalizes cluster centers if they drift over time

and so performs temporal smoothing and regularization. Note that the tensor W

has entries in [0, 1] and each matrix W t must be stochastic; it is minimized over all

such tensors. Also, c is minimized over all possible
(
n
k

)
cluster assignments over all

time steps. The distance function δt(·, ·) denotes the shortest journey between two

vertices in the dynamic graph at time t as described previously [1]. Finally, note

that λ is a tuning parameter that controls the influence of temporal regularization.

Phase 2

Phase 2 of STGkM aims to identify the long-lived partitions of graph vertices. The

output is an assignment of communities containing vertices with the most similar
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spatiotemporal characteristics. Phase 2 builds upon Phase 1, taking into account

short-term information in making decisions about long-term behavior. Intuitively,

we expect vertices with similar partitioning histories to belong to the same commu-

nity in the long run. We first extract the assignment histories from the weight tensor

W . We define the assignment histories au ∈ [k]|T|, which is a vector where each entry

contains the cluster assignment of vertex u at time t where atu = argmaxj W
t
u,j .

We can then leverage the Hamming distance to define a similarity score between

two vectors au, av. Recall that the Hamming distance is defined by counting the

number of entries where two vectors disagree, i.e., H(u, v) ≜ |{t : atu ̸= atv}|. Using

this distance, we say that the similarity between two vertices is sim(u, v) ≜ 1− H(u,v)
|T| .

We can then use agglomerative clustering to partition the vertices based on their

associated assignment history vectors.

Theoretical Analysis

Especially for statistical analysis, it is important to understand the “control case” or

null hypothesis; we provide an exposition of clustering behavior when there are no

true underlying clusters. To do this, we use the definition of dynamic connectivity

freely [7, 1] and define the Discrete Dynamic Erdős-Rényi graph: it is a dynamic

graph over discrete time, where we sample a new Erdős-Rényi graph at each time

step. More precisely, if we have N vertices, T total time steps (T may be infinite),

and p ∈ (0, 1), we define

At
uv

iid∼ Ber(p)

where u, v ∈ [N ], t ∈ [T ], and Ber(p) is a standard Bernoulli distribution that is 1

with probability p and 0 otherwise. We can observe that At is the adjacency matrix

at time t for our graph.

Definition 1 (Dynamic Connected Component) We say that distinct vertices u, v

are (dynamically) connected if there exists a finite journey from u to v and from v to

u for all time steps. By definition, we say a vertex is connected to itself, regardless of

the existence of journeys.[1] We say a set of vertices U (where U ⊆ V ) is a (dynamic)

connected component if all vertices in this set are connected and there is no vertex

in V \ U that is connected to a vertex in U .

Proposition 1 Dynamic connectivity is an equivalence relation. In particular,

two vertices are in a connected component if and only if they are connected.

Theorem 2 A discrete dynamic Erdős-Rényi graph almost surely (as time goes to

infinity) has only the trivial connected components, i.e., the connected components

are exactly the vertices in their own respective singleton sets.

[1]We do not need to impose this condition, but it makes our exposition much simpler

for the purposes of this paper.



Dabke and Dorabiala Page 4 of 4

Experiments
In order to test performance, we propose to evaluate STGkM on a handful of

datasets. We begin with small networks representing basketball and sheep herd-

ing data and culminate in large networks from the SNAP library [8]. All of our

datasets contain ground-truth communities, allowing us to quantify the validity of

our results. Our first experiment will explore basketball data [9]. We assign our play-

ers to the vertices of our graph and define an edge as existing between players if the

ball can be passed between them. We aim to identify the underlying offense-defense

structure within each team. Our next experiment looks at a synthetic sheep herding

dataset, and the goal is to identify the sheepdog that is driving the dynamics of

the sheep herd. Finally, we intend to explore increasingly larger networks from the

SNAP database. We also hope to use additional datasets if practicable.

Conclusion and Future Work
We introduce spatiotemporal graph k-means (STGkM) as an approach for commu-

nity detection through vertex clustering on dynamic graphs. Existing work treats

dynamic graph clustering as an online problem, iteratively updating existing graphs

or through machine learning, which has extensive parameters. Instead, we provide

an approach that is unified over space and time and provides us the ability to analyze

both the short-and long-term partitions of graph vertices, monitor the multi-scale

relationships between communities, and has just two explainable parameters.

We also provide some theoretical guarantees that explain clustering behavior un-

der a null hypothesis, which further reinforces any clustering results found with

our method. Finally, we propose experiments on a handful of datasets that will

empirically validate STGkM.
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