
On Systems of Dynamic Graphs:
Theory and Applications

देवव्रत ɟववेक दाबके
Devavrat Vivek Dabke

a dissertation
presented to the faculty
of princeton university

in candidacy for the degree
of Doctor of Philosophy

recommended for acceptance by the
Program in Applied and ComputationalMathematics

Adviser: Bernard Chazelle

May 2023

© Copyright by Devavrat Vivek Dabke, 2023. All rights reserved.

Abstract

Graphs are powerful mathematical structures that pose deep theoretical questions and
adapt to fascinating applications. Simple graphs have a rich history and many important open
problems, but contemporary research in graphs now involves a wide range of extensions: hy-
pergraphs, attributed graphs, graph neural networks, graph algorithms, network analysis, and
more. Each of these topics is its own active research area. This dissertation focuses on dy-
namic graphs, namely graphs whose structure depends on time. We will study traditional
simple graphs, as well as some of these extended graph structures, but all through the lens of
dynamical systems, where our state space is of graphs or their many variations.

To properly study dynamic graphs, we have to leverage techniques from graph theory, algo-
rithms, probability, machine learning, topology, geometry, and other mathematical and com-
putational disciplines. Part of the excitement of dynamic graphs comes from the seemingly
unlimited connections to other important areas of study. As an opus of applied mathematics,
this work will cover dynamic graphs that arise naturally from a wide range of applications in
virology, sociology, sports, biology, electrical engineering, satellite communication, and more.

While no document can be complete, this dissertation furnishes a survey on innovative
ongoing research in dynamic graphs, insight into their key constructions, a presentation of
our contributions to this area with collaborators, strong evidence for their utility in a wide
range of applications, and a hint at possible future directions for these elegant structures.

3

Contents

Abstract 3

I Background 13

1 Overview 14
1.1 Euler and the Origins of Graph Theory . 15
1.2 Moving Bridges . 17
1.3 Key Themes and Contributions . 21

2 Mathematical Introduction 25
2.1 Graphs and their Variations . 25
2.2 Applied Topology & Geometry . 28
2.3 Basic Graph Operations . 32

3 Brief Survey 34
3.1 Graph Dynamical Systems . 35
3.2 Applied Topology . 37
3.3 Machine Learning with Graph Neural Networks 39
3.4 Dynamic Networks So Far . 41

II Main Results 43

4 Tracking Virality in Connected Populations 44
4.1 Information as a Virus . 46
4.2 Estimating Asymptomatic Viral Spread . 65
4.3 Key Takeaways . 79

5 Fast-MovingNatural Networks 80
5.1 Basketball through Applied Topology . 82
5.2 Basketball through Geometry andMachine Learning 110
5.3 Lessons on Dynamism . 131

6 Final Frontier: Inspired by Space 132
6.1 Temporal Graphs in Lunar Networks . 134
6.2 Routing Problems and Dynamic Graphs 161
6.3 Final Notes . 190

4

III Looking Forward 191

7 Conclusion 192
7.1 Overview of Results . 193
7.2 The Bridges of Kaliningrad . 195

8 Future Directions 196
8.1 Theoretical Considerations . 197
8.2 Connections to Related Disciplines . 203
8.3 Application Areas of Interest . 205

Appendix A Code 209
A.1 Viral Networks . 211
A.2 Basketball . 218
A.3 Code in Space . 238
A.4 Exploratory Code . 245

References 252

5

Author List

Several sections in this dissertation include work completed with other contributors and is
reflected in various publications. All figures in this work that come from publications have
been reproduced with permission.

Section 4.1 includes work conducted with Eva E. Arroyo and Anita T. Layton. It is pri-
marily reflected in a publication entitledRumors with Personality: A Differential and Agent-
BasedModel of Information Spread through Networks64.

Section 4.2 includes work conducted with Kritkorn Karntikoon, Chaitanya Aluru, Mona
Singh, and Bernard Chazelle. It is primarily reflected in a forthcoming publication (not yet
published at the time of this writing) entitledNetwork-Augmented CompartmentalModels to
Track Asymptomatic Disease Spread.

Section 5.1 includes work conducted with Erin Taylor, Christopher J. Tralie, and John
Harer.

Section 5.2 includes work conducted with Bernard Chazelle. It is primarily reflected in a
publication entitled Extracting Semantic Information fromDynamic Graphs of Geometric
Data65.

Section 6.1 includes work conducted atNASAwith Alan Hylton, Robert Short, Jacob
Cleveland, Olivia Freides, Zander Memon, Robert Cardona, Robert Green, Justin Curry,
Sriram Gopalakrishnan, Brittany Story, Michael Moy, and BrendanMallery. It is primarily
reflected in a publication entitled A Survey ofMathematical Structures for Lunar Networks136.

Section 6.2 includes work conducted atNASAwith Jacob Cleveland, Alan Hylton, Robert
Short, BrendanMallery, Robert Green, Justin Curry, and Olivia Freides. It is primarily re-
flected in a publication entitled Introducing Tropical Geometric Approaches to Delay Tolerant
Networking Optimization56.

While each of these sections contains work with other authors, sections are not in one-to-one
correspondence with publications. Some material within a publication is not reflected in this
dissertation and much of each section is substantially revised, refreshed, and contains new
material.

6

Listing of figures

1.1 Königsberg and its layout when Euler would have seen it. The Pregel River weaves
throughout the city and has seven bridges that cross it. The bridges are highlighted
in green. This figure is reproduced with permission from102. 15

1.2 A graph that represents the bridges of Königsberg. Each vertex is a landmass within
the city and the edges represent a bridge between two pieces of land. While it would
not be unusual to see such a figure today, this 18th-century abstraction was a novel
idea by Euler. This figure is in the public domain and reproduced from91. . . 16

1.3 A simple, alternating graph sequence: G is the graph on the left andG′ is on the
right. We imagine that at odd timesteps, the graph goes clockwise (left), while at
even timesteps, the graph goes counterclockwise. There are a variety of real-world
edges that behave this way, e.g. roads that switch direction depending on the time
to account for rush hour traffic. Electrical current can also alternate within a wire.
In both cases, violating the direction of flow can have catastrophic results. . . 18

1.4 The time-extended version of the alternating sequence from Figure 1.3. The first
column of nodes representG, while the second column representsG′, and so on
and so forth. Between the columns, we draw the edges of the former column to
the matched vertices of the latter column. For example, edge (A,B) is represented
by the edge from the top vertex in the left-most column to the second vertex in
the second column. 19

1.5 The time-extended version of the trivial sequence of repeatingG over and over
again. This graph is constructed in the same way as Figure 1.4, but with a differ-
ent underlying graph. 20

4.1 The ISTKModel. This network-driven model is inspired by the traditional SIR
viral model and then Daley-Kendall model. There are four compartments: the
Ignorant, Spreader, sTifler, andKnowledgeable classes. The arrows in this dia-
gram characterize the flow between the classes and the relevant controlling pa-
rameters. 49

4.2 The result of numerically solving the differential model over 22 days. Each line
represents a particular population class, as indicated by the legend. The total pop-
ulation does not change over time and is normalized to 1. 56

4.3 Results of the sensitivity analysis of parameter α1 in the differential model. For
each value of α1 the time at which 75% of the population had been exposed to
the rumor is recorded. 57

4.4 Sensitivity analysis of parameter c in the differential model. For each credibility
value the time at which 50% of the population heard the rumor. 57

7

4.5 Results of the sensitivity analysis of parameter d (average days to forget) in the
differential model. The hour that 50% of the population heard the rumor is recorded
for each value of d. 58

4.6 Results of the agent-based model. Solid line indicates median proportion of pop-
ulation across the 400 trials; shadow indicates IQR. 59

4.7 Box-and-whisker plot comparing the steady states in Figure 4.2 (differential model)
and the end states in Figure 4.6 (Agent-based model). 59

4.8 Results of the most and least similar feature vectors to the population in the agent-
based model (average across 300 trials). 60

4.9 Density of the proportion of the population who heard the rumor after 22 days
with the most and least similar rumors (300 trials). 61

4.10 Linear model of the relationship between the final percentage of the population
heard rumor and average similarity score of the feature vector (r = 0.538). Shad-
ing designates the 95% confidence interval. 61

4.11 This network represents the counties of the New York City metropolitan area.
Each state is colored differently withManhattan at the center in black. The node
size corresponds to the population in that county. The nodes are positioned ac-
cording to the geographic center of each county. 72

4.12 This figure demonstrates the predictive power of our estimation techniques per
parameter. Each plot compares the actual and predicted value of a parameter for
many different combinations of the two others. As expected, the estimation of
ρ degrades as the actual value gets large. Ultimately, if no one feels sick, behav-
ior does not change and the method cannot pick up ρ. 76

4.13 This graph displays real COVID data against TraSIR-simulated data. The blue
ragged line is the reported daily case count across the New York City metro area,
summed across the 44 counties considered here. The orange smooth line is the
simulated daily symptomatic case count with our estimated parameters. . . . 77

5.1 A basketball court with with defense in blue and offense in orange. The court
picture is reproduced from http://printablediagram.co. 95

5.2 A basketball court with a regular rectilinear gridding. This figure is the same as
Figure 5.1 but has a regular grid on top of it. The defense is in blue and the of-
fense is in orange. 96

5.3 A basketball court with a position-based rectilinear gridding. This figure is the
same as Figure 5.1 but has a position-based rectilinear grid on top of it. In par-
ticular, for each defense player (in blue), we place a vertical and horizontal line
at their position, e.g. for a player at (x0, y0), we place the lines x = x0, y =
y0 on top of the basketball court. We do not do anything for the offense (in or-
ange). 97

5.4 A basketball court with a regular polar gridding, emanating from the basket that
the offense (orange) is pursuing and the defense (blue) is defending. The polar
grid image is from http://etc.usf.edu. 98

5.5 A basketball court with a Delaunay triangulation gridding. We take the Delay-
nay triangulation of the players on the defense (in blue), along with points at each
corner of the half-court and the basket. We do not compute a gridding from the
offense (in orange). 99

8

5.6 A basketball court with the convex hulls of the defense (blue) and offense (orange).
. 100

5.7 The raw trajectory data of the ten basketball players in a particular play within
a particular Duke University basketball game. 102

5.8 A bar graph that displays the size of each of the clusters detected by the spectral
clustering method. 103

5.9 Dendrogram of the relationship between plays. Play indices are indicated along
the x-axis, while relative similarity is indicated across the y-axis. Clustering is based
on Delaunay Triangulation for gridding. 104

5.10 Cross-similarity matrix showing aggregate similarity across experiments. Play num-
bers are reordered to correspond to the order in the dendrogram. 106

5.11 Cross-similarity matrix with corresponding dendrogram along with a manual la-
beling of possession clusters by well-known play types. 107

5.12 Overview of the data analysis pipeline presented in this section. First, the raw tra-
jectory data is converted into interaction networks. Then, by comparing graphs
up to isomorphism, we can construct a “library” of possible configurations. We
can then construct a jumpMarkov model by taking the empirical maximum like-
lihood estimator with graphs as the state space. Finally, we can feed in the raw tra-
jectory data and the graph data from the jumpMarkov model into a Transformer
model for prediction. This article opens the door to future work on inferring game
semantics and strategies from actual games. 111

5.13 A deeper look at a snapshot of a basketball game. Green nodes with Roman char-
acters are offensive players. Red nodes with Greek letters are defensive players.
On the left, we see player positions with occlusion fields. In the center, we see all
offensive lines of sight. On the right, we see the occlusion network with only the
offensive edges. 116

5.14 A frame of the basketball game with the constructed passing network. Green cir-
cles with Latin letters are the offense, while red circles with Greek letters are the
defense. 117

5.15 The architecture diagram of a Transformer, as presented in287. The Transformer
has an encoder system (left) and a decoder system (right) and uses self-attention
in three ways to accurately capture semantic information from both sequences.
. 122

5.16 Sample library of graphs for a possession, descending in order of frequency from
left to right and top to bottom. 123

5.17 Two players on the offense (black points on either side of the line segment) with
a member of the defense in between them (large orange ball in the center). . . 124

5.18 The number of edges for a particular possession in the game. Mathematically, the
number of edges are a random walk over the frames of data within a possession.
. 125

5.19 Probability transition matrix for a sample possession. This transition matrix as-
sumes a naive Markov chain and therefore has most of the density for each row
on the diagonal. 127

9

5.20 Sample hold time distribution as a cumulative density function of a representa-
tive graph in a representative possession. The blue dots are the true data, which
have an average of 5, giving an exponential distribution with parameter 1

5
The

orange dots represent an ideal exponential distribution with the same parame-
ter. 128

6.1 A picture of an example satellite network from a simulation tool used atNASA.
Note, connections are denoted by a line between two devices. 153

6.2 An example space network that connects a system of satellites with communica-
tion nodes to Earth. 163

6.3 An example of a parametric graph. 164
6.4 An analytical solution of cell decomposition and associated shortest path trees

corresponding to Figure 6.3. Results from applying the Joswig algorithm described
below. Each interval shows the values of parameter x for which each tree (T0, T1, T2)
optimal. Note that there is a fourth tree omitted, which is the same as T0 except
with the path to v1 going along the leftmost edge with weight 5. It is omitted be-
cause there are no values of x that make it optimal. 168

6.5 An example sequence of steps in the binary search. 170
6.6 Example output of binary (first) implementation applied to Figure 6.3. Note that

this agrees with the solution given in Figure 6.4. 172
6.7 Example graph with two parameters. Note the separability. 173
6.8 Lines for two parameter binary search, n = 5 sample lines, corresponding to

Figure 6.7 . 174
6.9 Example output of binary (first) implementation applied to Figure 6.7. 174
6.10 Example output of our Joswig (second) implementation applied to Figure 6.3.

Note that this agrees with the solution given in Figure 6.4. 175
6.11 Waveform associated with the Verilog Tropical ALU implementation. 176
6.12 High level representation of program being demonstrated in the waveform of Fig-

ure 6.11. 177

8.1 A simple graph sequence parsed via renormalization. 202
8.2 The alternating graph sequence with eight nodes (analogous to the graph in Fig-

ure 1.3) parsed with renormalization. 203
8.3 A snapshot of a mouse embryo in development. It displays a variety of cells in

color and their estimated geometry. Although difficult to discern from this im-
age, it is possible to tell which cells physically adjoin each other and which cells
may have inter-cell signaling. Furthermore, it is possible to track cells across time
and, as they split, retain ancestry information. 206

8.4 A snapshot of the subway system in New York City. Each line represents a sub-
way line and the colors with varying intensity display the congestion across these
pathways. 207

10

Tomy family, with all my love.

11

Acknowledgments

I have been continuously educated since Kindergarten, which started when I was five
years old. To finish a dissertation—overcoming both personal and professional challenges—I
have many people to acknowledge, which I will attempt to do here. I would like to broadly
thank my family, friends, and colleagues in the wide range of endeavors I have been blessed to
participate in. From all-nighters to group projects, from long video chats to shared beverages,
I am profoundly grateful to everyone who has helped me grow, learn, and live.

For their help in my education, I would like to thank my favorite teachers: Ms. Brown, Ms.
Butler, andMs. LaBrosse; and toMs. Galuska andMs. A, for pushing me to be the best stu-
dent I could be. At Duke, I had the privilege of learning from Profs. Pierce and Calderbank,
who instilled in me much needed mathematical discipline; Prof. Harer and Dr. Tralie taught
me how to conduct research; and Profs. Mösenbichler-Bryant, Tufts, Siegel, Gillespie, and
Wood Crowley opened my eyes to the world outside of math. I have a special place in my heart
for Xiaobai, who always believed in me. And, to my very first professor, whom I met in her
10:05 AMMonday class, I simply cannot enumerate howmany ways in which she has pro-
vided her advice, mentorship, and kindness: Anita, thank you beyond measure.

To Elaine, Joni, Analese, Chris, Ryan, Liz H., Salman, Jeff, and John, I appreciate our work
to make the world a better place through technical education. To Ken, Kyle, and Liz P., thank
you for showing me the lifelong joy of learning. I have enjoyed research activity with my bril-
liant collaborators, all of whom have ideas represented directly or indirectly here: Eva, Bren-
dan, Michael, Jacob, Olivia, Zander, Robert C., Sriram, Brittany, Kritkorn, Mona, and Justin.
I would also like to thank Peter, Sam, Rohith, Jess, Erin, and Emily for always picking up my
phone calls for both technical and personal conversations. And to Robby, I hope we never
stop exploring our ideas together.

I would like to express gratitude to my program, especially Bernadeta, Victoria, Gina, Tina
and, the one who holds everyone together, Audrey. I have had the privilege of studying with
two mentors atNASA: Alan and Bob. I would like to thank them for creating most intellec-
tual and inviting space within the atmosphere to study the one without. Of course, the most
important influence on my dissertation has been my adviser, Bernard. To him, I have infinite
gratitude for his mathematical insights and unyielding support.

To Alice andMike, I hope that you would have been proud to see this dissertation; to
David and Helen, I am glad you helped me cross the finish line at every step. I would also like
to thank Suparna for her patience and Avanti, Tanvi, Vetra, and Shirish, for all of the years
they have indulged my mathematical education in their company. I would not be here today
(for a wide variety of reasons) without my parents: I love you. And, without the love from
Sugar, Spice, Daisy, andMacaroni (Max), I would not have learned anything at all.

12

Part I

Background

13

The more I think about language, the more it amazes me

that people ever understand each other at all.

Kurt Friedrich Gödel

1
Overview

U
nsurprisingly, the roots of graph theory can be traced to Leonhard Euler, the bril-

liant and indefatigable mathematician, who solved the famous Bridges of Königsberg

problem40. This problem concerns itself with seven bridges in the city of Königsberg and

their particular arrangement around the Pregel River.

14

1.1. Euler and the Origins of Graph Theory

Figure 1.1: Königsberg and its layout when Euler would have seen it. The Pregel River weaves
throughout the city and has seven bridges that cross it. The bridges are highlighted in green. This
figure is reproduced with permission from102.

In Figure 1.1, we see the location of the seven bridges in and around the city, with their respec-

tive crossings over the Pregel. The key problem posed: is it possible to take a walk through the

city and cross each of the seven bridges exactly once? Being the astute problem-solver, Euler

solved this problem, but more importantly than efficiently sightseeing the bridges of a tran-

quil albeit obscure European city, he generalized his technique via defining the first recorded

instance of a graph.

15

Figure 1.2: A graph that represents the bridges of Königsberg. Each vertex is a landmass within the
city and the edges represent a bridge between two pieces of land. While it would not be unusual
to see such a figure today, this 18th‐century abstraction was a novel idea by Euler. This figure is in
the public domain and reproduced from91.

By removing all irrelevant structures and focusing on the topological properties of the prob-

lem, Euler was able to conceptualize the problem as a graph, as seen in Figure 1.2. Putting this

together, Euler proposed the following theorem87:

Thus for any configuration that may arise the easiest way of determining whether a

single crossing of all the bridges is possible is to apply the following rules:

If there are more than two regions which are approached by an odd number

of bridges, no route satisfying the required conditions can be found.

If, however, there are only two regions with an odd number of approach

bridges the required journey can be completed provided it originates in one of

the regions.

If, finally, there is no region with an odd number of approach bridges, the

required journey can be effected, no matter where it begins.

These rules solve completely the problem initially proposed.

We can rewrite Euler’s observations in contemporary graph theoretic language.

Definition 1.1.1 (Euler Path). Given a (simple, undirected) connected graphG, an Euler

path is a path that contains each edge in the graph exactly once.

16

With this definition, we can write the Euler Theorem, as Theorem 1. (For further defini-

tions, see Chapter 2.)

Theorem 1 (Euler Theorem). A (simple, undirected) connected graphG has an Euler path

if and only if it has exactly zero or two vertices of odd degree. Additionally, for graphs with

exactly two vertices of odd degree, every Euler path inG has to start from one of these vertices

of odd degree and end at the other.

This neat historical problem illustrates the motivation behind graph theory. By excavating

the core structure to a set of vertices and edges, we can deftly analyze our situation. In his case,

Euler was dealing with ancient bridges in a static city, but our modality is a bit different.

1.2. Moving Bridges

Euler’s key innovation was the construction of a graph, but three hundred years or so later,

we will now update his problem and allow the bridges to move. One obvious case is the road

network in a city. Consider someone living in Manhattan, New York, NY: roads are contin-

ually closed, the city places haphazard pedestrian detours, and there are accidents among the

cyclists, taxis, and tourists all the time. We are faced with a wider class of graph problems, but

our accessible routes are constantly shifting over time. We are thus not just interested in the

topological insights of a static graph, but rather the abstraction of a dynamic graph.

To motivate why this abstraction is needed, we consider a simple example that became

the thorn in my side that motivated this entire thrust of research. In Figure 1.3, we see an

example of an alternating graph. For a formal characterization, we define the graphsG =

17

(V,E), G′ = (V,E ′)where

V = {A,B,C,D}

E = {(A,B), (B,D), (D,C), (C,A)}

E ′ = {(B,A), (D,B), (C,D), (A,C)}

A B

C D

A B

C D

Figure 1.3: A simple, alternating graph sequence: G is the graph on the left andG′ is on the
right. We imagine that at odd timesteps, the graph goes clockwise (left), while at even timesteps,
the graph goes counterclockwise. There are a variety of real‐world edges that behave this way,
e.g. roads that switch direction depending on the time to account for rush hour traffic. Electrical
current can also alternate within a wire. In both cases, violating the direction of flow can have
catastrophic results.

From here, let us consider the “alternating” discrete-time graph sequence, where we switch

from the left graph,G, to the right graph,G′, at every timestep. More precisely, we can define

the sequenceG = (Gt)t∈N, where

Gt =

G t is odd

G′ t is even

From here, we can define a simple dynamical system. We will place a particle on nodeA at the

first timestep and force this particle to move across an edge at every timestep. Mathematically,

18

we define xt to be the position of our particular at every timestep with the following restric-

tions. We can write xt ∈ V with our positional sequence being x = (xt)t∈N. We then can

define the rules of our dynamical system as

xt =

A t = 1

∈ N t−1(x) otherwise

where we define

N t−1(u) ≜ {v : (u, v) ∈ Et−1}

Now, we can ask the natural question: how does this dynamical system behave? As a static

graph theorist, we could invoke a simple lemma: each graph in the sequence is strongly con-

nected. The maximum possible diameter of a graph of n nodes is n − 1 and we are thus

tempted to conclude that we will start and return toA inO(n) time. Of course, we would

be baldly misapplying this fact; simply looking at this sequence tells us that we will never move

pastA andB.

Admittedly, there may be a simple way to convert this dynamic sequence into a static one.

Figure 1.4: The time‐extended version of the alternating sequence from Figure 1.3. The first
column of nodes representG, while the second column representsG′, and so on and so forth.
Between the columns, we draw the edges of the former column to the matched vertices of the
latter column. For example, edge (A,B) is represented by the edge from the top vertex in the
left‐most column to the second vertex in the second column.

19

One possible resolution is the creation of the time-extended graph, which we can see in Fig-

ure 1.4. This graph “unrolls” the alternating sequence into a larger graph with copies of each

node for each timestep. From this, we can see that we have four disconnected components,

which suggest to us that perhaps a disconnected time-extended graph implies a dynamical sys-

tem that is disconnected. (n.b. time-extended graphs are inherently directed because of causal-

ity, so they can never be strongly connected, though they can be weakly connected.) However,

this proposition is blatantly false.

To see why this is false, let us consider the sequence of justG, i.e. we repeat the same graph

over and over again as our sequence, which is perhaps not an interesting sequence.

Figure 1.5: The time‐extended version of the trivial sequence of repeatingG over and over again.
This graph is constructed in the same way as Figure 1.4, but with a different underlying graph.

In Figure 1.5, we see the result of this process and we get another disconnected time-extended

graph, but our sequence will allow our particle to move across it without issue. Time-extended

graphs are certainly a useful analytical tool, but static notions of connectivity cannot and do

not fully characterize the dynamic case. Moreover, we have some obvious issues with this

construction: if we have T total timesteps and n original vertices in our graph, our construc-

tions will operate overO(n · T) total vertices, which is unsatisfying for the theorists (because

T = ∞ in many cases) and impractical for the realists (because nmay already be somewhat

large). Looking at even this simple example, we start to see the shortcomings of our tools from

static graph theory. While these tools may have helped Euler solve the problem of bridge cross-

20

ings, our contemporary world is full of dynamical systems that require much more sophisti-

cated tools.

So what do we do from here? It is not a trivial task to extend static notions to their dynamic

counterparts, which is what we endeavor to do in later parts of this dissertation. We will in-

deed see a solution to our problem and it involves the construction of novel results with associ-

ated proofs.

1.3. Key Themes and Contributions

Even in this overview, we can see a hint at what is on offer to us by studying dynamic graphs.

There are three key themes that recur consistently throughout the study of dynamic graphs

and will be highlighted throughout this dissertation.

1. Non-locality: traditional static properties that may explain a local part of a dynamic

graph do not trivially extend to global properties. We can already see this in our exam-

ple of the simple alternating graph in Figure 1.3.

2. Naturalness: dynamic graphs arise naturally in a wide range of contexts. As we pursue

the various applications and future directions for this work, we will see many examples

of life modelled crisply by dynamic graphs.

3. Tractability: while there are many benefits of purely theoretical areas of study, dy-

namic graphs are practical. When we define certain algorithms over them, they are in-

deed tractable and computationally feasible. We can also apply cutting-edge techniques

in machine learning to them to find interesting and surprising results.

1.3.1. Structure of this Dissertation

In this dissertation, we will cover a variety of theoretical tools, applications, and techniques

in machine learning that help uncover this rich area of study. Chapter 2 gives an outline of

21

the mathematical notation and concepts that are invoked throughout this work and Chap-

ter 3 provides a survey of the state of affairs as of the time of this writing. In the second part of

this dissertation, Chapters 4, 5 & 6 cover dynamic graphs in a wide variety of settings: Chap-

ter 4 describes traditional discrete- and continuous-time models with dynamic graphs and

uses analytical and agent-based techniques to characterize these systems; Chapter 5 provides

mechanisms for dynamic graphs in extracting the embedded geometric information within

basketball games and leverages techniques in applied topology, algorithms, and machine learn-

ing; and Chapter 6 uncovers the main theoretical results (directly addressing our alternating

sequence), as well as a plethora of applications to space networks using exotic mathematical

structures found in algebraic topology and tropical geometry. Finally, Chapter 7 ties together

the value of dynamic graphs and Chapter 8 looks ahead to future research directions. This dis-

sertation has been completed under the Program in Applied and ComputationalMathematics,

so many of the results are powered by code, which is described in Appendix A.

1.3.2. Main Contributions

In this work, as indicated by the title, we contribute both theoretical and practical results.

From a theoretical perspective, even with existing tools, we aggregate several areas of mathe-

matics in novel ways, provide a detailed review of relevant literature, and demonstrate novel

connections between different constructions within mathematics and computer science. We

also contribute several novel ideas, mainly:

1. In Section 4.1, we define a feature-based dynamic network model that captures the

propagation of viral data across a population. While we use this model for viral in-

formation, this model can handle any viral particle spreading through any notion of

a connected population. We give a sketch of a theoretical analysis of this model and

construct both a differential and agent-based version of this model.

2. In Section 4.2, we define a dynamic network model, TraSIR, that captures viral spread

across a population with a binary separating class. The particular application is for

22

asymptomatic and symptomatic spread in COVID-19. This model can also capture

feature that induces a binary partition the population. We also give a theoretical analy-

sis of this model.

3. In Section 5.1, we define the novel concept of a “crossing” and connect it to important

definitions with geometry and topology. We demonstrate its capacity to serve as a met-

ric space with appropriately chosen metrics and connect this to the existing literature

on clustering.

4. In Section 5.2, we construct a novel pipeline for analyzing geometric data using dy-

namic networks and machine learning. We use this in the context of basketball, but

this pipeline is generic enough to handle many different types of geometric data that is

tractable for “semantic” analysis.

5. In Section 6.1, we provide a robust set of definitions for dynamic networks. We pro-

vide a translation of common static graph definitions (e.g. connectivity) and elevate

them to the dynamic setting. We prove several results about these constructions. We

also introduce the notion of summary graphs, describe their utility in the general case,

construct two examples, and provide some results about our constructions. Finally, we

also make connections to zigzag persistence, algebraic topology (through sheaves), and

game theory.

6. In Section 6.2, we provide an overview of tropical geometry and max-plus algebra in

the context of graphs. We also construct the notion of parameterized graphs, a notion

of tropical graphs, a notion of optimality, and demonstrate the utility of optimization

problems in this setting with relevant connections to existing graph algorithms. We

prove results about these tropical graphs and some results with respect to well-known

graph centrality measures, which we define later on. We finally show stability results of

these optimization problems.

From a practical perspective, we give concrete implementations of important classes of al-

23

gorithms, write code to simulate our ideas, analyze data, and demonstrate several empirical

results. We connect our ideas to fun and important applications areas, namely sociology, epi-

demiology, sports, and satellite networks. Our main contributions are as follows:

• In Section 4.1, we simulate our differential feature-vector model and provide a thor-

ough sensitivity analysis. We then take real network data from Facebook and simulate

the spread of viral information. We demonstrate the ability of our network to capture

viral spread and its invariance to different network topologies. We also have a codebase

for this model in MATLAB.

• In Section 4.2, we run simulations of our TraSIRmodel against real COVID-19 data.

We display the results of our simulation and demonstrate the ability of our model to

capture real-world data. Finally, we perform parameter estimation and derive a first-

principles estimate of the asymptomatic COVID-19 spread rate that we validate from

the literature. We also have a codebase for this model in python.

• In Section 5.1, we deliver a pipeline to cluster basketball plays based on the underlying

basketball player trajectory data. We performmanual review to demonstrate that our

clustering technique is correct and we have code to support this technique.

• In Section 6.1, we construct some useful notions of graph summarization that are com-

putationally tractable and we maintain an open-source codebase that implements these

ideas for general use.

• In Section 6.2, we use our theoretical contributions to generalize shortest-path algo-

rithms in the context of dynamic satellite networks. We run simulations on synthetic

satellite data (n.b. real satellite data is restricted by International Traffic in Arms Regu-

lations (ITAR) and illegal to distribute in many cases, so we do not provide real data) to

demonstrate the utility of our work.

24

The science of operations, as derived frommathematics

more especially, is a science of itself, and has its own

abstract truth and value

Augusta Ada King, Countess of Lovelace

2
Mathematical Introduction

D
efinitions are the foundation of any mathematical theory. In this section, we provide

a set of definitions, basic results, and constructions that are pervasive throughout this

work. We strive to balance formal rigor and practical working results.

2.1. Graphs and their Variations

For completeness and as an homage to the roots of this dissertation, we start with our first

definition.

25

Definition 2.1.1 (Graph). Given a (finite) vertex set V , a graphG is at tuple

G = (V,E)

whereE ⊆ V × V . We generally say this is a simple graph.

Additionally, if (u, v) ∈ E ⇐⇒ (v, u) ∈ E, then we say the graph is undirected

and directed otherwise (we also say digraph). We can also construct undirected graphs by

lettingE ⊆ P(V) : ∀e ∈ E, |e| = 2whereP is the power set. In other words,E is some

subset of the set of all subsets of size two. This second definition aligns well with the notion of

a hypergraph.

Definition 2.1.2 (Neighborhood). Given a graphG = (V,E), the neighborhoodN(u) ⊆

V of a vertex u ∈ V is defined as

N(u) ≜ {v : (u, v) ∈ E}

For a directed graph, we may have the inbound and outbound neighborhoods defined as

NOUT(u) ≜ N(u)

NIN(u) ≜ {v : (v, u) ∈ E}

Definition 2.1.3 (Degree). Given a graphG = (V,E), the out-degree and in-degree of a

vertex are defined as

degOUT(u) = |{v : (u, v) ∈ E}| degIN(u) = |{v : (v, u) ∈ E}|

In other words, the out-degree (in-degree) of a vertex is simply the number of edges that start

from (resp. end at) a given vertex. In an undirected graph, the out-degree and in-degree are

equal for every vertex, so we unambiguously just say the degree and define it to be the out-

degree.

26

Definition 2.1.4 (Path). In a graphG = (V,E), we say a path P is a sequence of vertices, i.e.

P = (vi0 , vi1 , . . . , vik), such that for 1 ≤ j ≤ k, (vij−1
, vij) ∈ E. In other words, a path is

a sequence of vertices where each consecutive pair of vertices in the sequence forms an edge in

the digraph. P has length k.

Definition 2.1.5 (Shortest Path Length). Given a digraphG, letP be the set of all finite

paths andP(i, j) be the set of all finite paths where the first vertex is vi and the last vertex is

vj . We define the shortest path length SP(i, j) as

SP(i, j) = min
P∈P(i,j)

length(P).

Definition 2.1.6 (AdjacencyMatrix). Given a graphG = (V,E), we can define its adjacency

matrixA, which is an |V |-by-|V |matrix satisfying

Aij ≜

1 (i, j) ∈ E

0 otherwise

Definition 2.1.7 (Graph Diameter). Therefore, we can now define the diameter of G as

diameter(G) = max
i,j∈|V |

SP(i, j).

Notably, SP(i, j) can be∞, so the diameter can be, too; in particular, this happens when no

path exists.

Definition 2.1.8 (Connected Graph). A graph is a connected graph if its diameter is finite.

A directed graphG = (V,E) is strongly connected if it is connected and weakly connected if

G′ = (V,E ′) is connected, where

E ′ = E ∪ {(v, u) : (u, v) ∈ E}

Definition 2.1.9 (Weighted Graph). A graphG = (V,E) can be promoted into aweighted

27

graphwith a weight function ω where

ω : E → R

We generally writeG = (V,E, ω).

From here, we can define the core object of study quite quickly.

Definition 2.1.10 (Dynamic Graph). Given a (finite) vertex set V and a totally ordered in-

dexing set T, we define the sequence of edge sets (Et ⊆ V × V)t∈T. We can then define the

dynamic graph G as

G = (Gt)t∈T

whereGt = (V,Et). If for all t, (u, v) ∈ Et ⇐⇒ (v, u) ∈ Et, then the dynamic graph is

undirected, and we define directed analogously to a simple graph.

2.2. Applied Topology & Geometry

2.2.1. Simplicial Complexes

Definition 2.2.1 (Convex Hull). A set of points in Euclidean space (or any real affine space)

is convex if for every two points in the set, the line segment between the two points is also in

the set. Given a setX of points in Euclidean space, its convex hull is the (unique) minimal

convex set that containsX . See Figure 5.6 for a real example of two convex hulls we produced

from data.

Definition 2.2.2 (Simplex). Given a set of k + 1 points V = {v0, . . . , vk}, the k-simplex is

the k-dimensional convex hull of V . We write this simplex σ as σ = [v0, v1, . . . , vk]A simplex

is thus a combinatorial geometric object for a set of points within a geometric space and is

generalization of our natural notion of a “point,” “line segment,” “face,” or “polytope” for a

set of points. For example, a tetrahedron has several simplices:

28

1. Each point of the tetrahedron is a 0-simplex.

2. Each line segment connecting two points is a 1-simplex

3. Each triangular face defined by three points is a 2-simplex

4. The whole tetrahedron is itself a 3-simplex.

Definition 2.2.3 (Face). A face τ of a simplex σ is a simplex formed by a non-empty subset of

the vertices of σ, i.e.

τ ⊆ σ

Definition 2.2.4 (Simplicial Complex). A simplicial complexK is a finite collection of sim-

plices such that:

1. Every face of a simplex inK is also inK .

2. The intersection of any two simplices inK is a face of both simplices.

2.2.2. Computational Geometry

Definition 2.2.5 (Triangulation). A triangulation of a set of pointsX inRd is a subdivision

of the convex hull ofX into a set of non-overlapping simplices, such that each vertex of the

simplices belongs toX , and the intersection of any two distinct simplices is either empty, a

shared vertex, or a shared edge.

Formally, given a set of pointsX = {x1, x2, . . . , xn}, a triangulation T is a collection of

simplices {σ1, σ2, . . . , σm} satisfying the following conditions:

1. The union of all simplices in T is equal to the convex hull ofX . In other words, if we

combine all of the simplices, then we recover the convex hull of all points.

2. The intersection of any two distinct simplices in T is either empty, a shared vertex, or a

shared edge, i.e., σi ∩ σj = ∅, a vertex, or an edge for all i ̸= j.

29

Definition 2.2.6 (Voronoi Diagram). Given a set of (distinct) pointsX = {x1, x2, . . . , xn}

inRd, aVoronoi diagram is a partition of the space into cells, where each cell corresponds to

a point inX . The cell associated with point xi consists of all points inRd that are closer to xi

than to any other point in P .

Formally, the Voronoi cell V (xi) corresponding to point xi is defined as:

V (xi) = {x ∈ Rd : ∀j ̸= i, ∥x− xi∥ ≤ ∥x− xj∥}. (2.1)

To create the Voronoi Diagram, we draw the set of Voronoi Cells for each point x, which is

defined to be the locus of points closest to p (usually using the Euclidean distance, though any

metric will suffice).

Definition 2.2.7 (Delaunay Triangulation). Given a set of pointsX = {x1, x2, . . . , xn}

inRd, a Delaunay triangulation is a triangulation ofX that satisfies the empty circumcircle

property, i.e. the circumcircle (or circumsphere) of each simplex in the triangulation contains

no other points ofX in its interior. Formally, a triangulation T ofX is aDelaunay triangula-

tion if for each simplex σ ∈ T , the open ball circumscribing σ contains no points ofX .

Notably, a Delaunay triangulation can be constructed using Voronoi cells for a set of (dis-

tinct) points: we construct the Voronoi diagram for our points and then we draw a straight

line segment between every pair of points whose Voronoi cells are adjacent or “touch.” In

other words, we connect points whose Voronoi cells are next to each other. This set of points

and line segments forms the Delaunay Triangulation, since the set of line segments will in fact

be a triangulation over the convex hull of the set of points.

See Figure 5.5 for a real example of a Delaunay triangulation.

30

2.2.3. Persistent Homology

Definition 2.2.8 (Filtration). A filtration of a simplicial complexK is a nested sequence of

subcomplexesKi such that:

K0 ⊆ K1 ⊆ . . . ⊆ Kn = K

Definition 2.2.9 (Persistence Module). A persistence module V is a collection of vector

spaces Vi and linear maps fi,j : Vi → Vj such that:

1. fi,i = idVi for all i.

2. fj,k ◦ fi,j = fi,k for all i ≤ j ≤ k.

Definition 2.2.10 (Simplicial Homology). Given a topological spaceX , the kth homology

groupHk(X) is a group that captures the k-dimensional “holes” or “cycles” in the space. In-

tuitively,H0(X) represents the connected components ofX ,H1(X) represents loops or

one-dimensional holes,H2(X) represents two-dimensional voids, etc.

The k-th chain group, denotedCk(K), is the free abelian group generated by the set of k-

dimensional simplices inK . Elements ofCk(K) are called k-chains and can be represented

as formal linear combinations of k-simplices with integer coefficients. The boundary operator,

denoted ∂k : Ck(K)→ Ck−1(K), is a linear map that takes a k-chain and returns its (k − 1)-

dimensional boundary. The boundary operator is defined as follows:

∂k(σ) =
k∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vk]

where σ = [v0, v1, . . . , vk] is a k-simplex and v̂i indicates that the vertex vi is omitted from

the sum.

The kth simplicial homology group, denotedHk(K), is defined as the quotient group of

31

the kth cycle group by the kth boundary group:

Hk(K) = Zk(K)/Bk(K)

whereZk(K) = kernel(∂k) is the k-th cycle group (chains with zero boundary), andBk(K) =

image(∂k+1) is the kth boundary group.

Definition 2.2.11 (Persistent Homology Groups). For each dimension k, the persistent

homology groups are the homology groups of the filtered simplicial complex.

Hk(Ki)
fi,j−−→ Hk(Kj)

Definition 2.2.12 (Persistence Diagram). A persistence diagram is a multiset of points in

R2 that represents the birth and death times of topological features in the filtration.

D = {(b1, d1), (b2, d2), ..., (bn, dn)}

Definition 2.2.13 (Persistence). The persistence of a topological feature is the difference

between its birth time and death time, i.e. pi = di − bi.

2.3. Basic Graph Operations

Given a graph, one classical algorithm to find the shortest path from one vertex to the others is

Dijkstra’s Algorithm, see in Algorithm 1.

32

Algorithm 1Dijkstra’s Algorithm
Require: A connected, weighted graphG = (V,E, ω) such that ω ≥ 0 and a source vertex s

Ensure: A list of shortest path distances d from s to all other vertices

procedureDijkstra(G, s)

Q← V , d[s]← 0

for v ∈ V \ {s} do

d[v]←∞

whileQ ̸= ∅ do

u← argminv∈Q d[v]

for v ∈ N(u) do

alt← d[u] + ω(u, v)

if alt < d[v] then

d[v]← alt
return d

33

My brain is open.

Paul Erdős

3
Brief Survey

A
s with many other fundamental mathematical structures, graphs have found utility

across the scientific and literary disciplines. Without exaggeration, graphs have be-

come a defining mathematical structure in nearly all science, engineering, mathematical, and

computational disciplines. Part of their usefulness comes from the ease of visualization: graphs

are simple and quick to draw. While we cannot cover everything in our survey, we touch

upon the important foundations of our work: we are but people standing on the shoulders

of giants and here, we try to cover the giants standing right below us. More precisely, we con-

sider a brief range of other topics that directly entertain dynamic networks.

In this survey, we look at:

1. Graph dynamical systems: dynamical systems that are defined with respect to a graph

34

structure.

2. Applied topology: we consider the foundational tools of applied topology (and topo-

logical data analysis) with respect to dynamic networks.

3. Machine learning: we look at graph neural networks and what we can say about them

with tools frommachine learning and, appropriately, graph neural networks.

3.1. Graph Dynamical Systems

Graph dynamical systems (GDS) are mathematical models that describe the evolution of the

state of a graph over time. They have become a powerful tool for modeling complex networks

in various fields, including biology, social sciences, and engineering. This survey aims to pro-

vide an overview of the key concepts, methods, and applications of graph dynamical systems,

with a focus on the different types of dynamical systems, their properties, and their relevance

to real-world problems. The cited works cover a wide range of topics and offer a comprehen-

sive view of the field.

3.1.1. Continuous‐Time Dynamical Systems

Continuous-time dynamical systems describe the evolution of the state of a graph as a contin-

uous function of time. Examples of continuous-time GDS include the Kuramoto model160,

which describes the synchronization of coupled oscillators, and the Lotka-Volterra model129,

which models the dynamics of interacting populations.

3.1.2. Discrete‐Time Dynamical Systems

Discrete-time dynamical systems describe the evolution of the state of a graph as a discrete

function of time, with updates typically occurring at fixed time intervals. Examples of discrete-

35

time GDS include cellular automata297, which model spatially distributed systems, and the

Ising model138, which describes the dynamics of magnetic systems.

3.1.3. Stability, Controllability, and Observability

Stability is a crucial property of GDS, as it determines the long-term behavior of the system.

Lyapunov stability180 is a common concept used to analyze the stability of GDS, while more

specialized stability notions, such as synchronization stability225 and consensus stability217,

have been developed for specific classes of GDS.

Controllability and observability are fundamental concepts in the study of GDS, as they

describe the ability to manipulate and monitor the state of a graph. The structural control-

lability and observability of GDS have been extensively studied171,176, with applications in

network design and control.

3.1.4. Biological Systems

GDS have been widely applied in the study of biological systems, such as gene regulatory net-

works151, metabolic networks219, and neural networks131. These models have provided valu-

able insights into the mechanisms underlying various biological processes and have guided

experimental research in the life sciences.

3.1.5. Social and Economic Systems

GDS have been used to model social and economic systems, such as opinion dynamics125,

spreading processes223,222, and traffic flow66. These models have helped researchers under-

stand complex phenomena in these fields, such as the emergence of consensus or polarization,

the spread of information or diseases, and the optimal management of transportation net-

works.

36

3.1.6. Engineering and Technology

In engineering and technology, GDS have found numerous applications, including power

grid stability203, communication networks86, and robotic swarms31. These models have been

used to design more efficient and robust systems, as well as to develop control strategies for

their optimal operation.

Graph dynamical systems provide a versatile and powerful framework for studying the

behavior of complex networks in a wide range of domains. This survey has presented an

overview of graph dynamical systems, with a focus on their properties and relevance to real-

world problems. The cited works offer a broad view of the field, and future research is ex-

pected to continue expanding our understanding of GDS and their applications.

3.2. Applied Topology

As a subfield of computational topology, applied topology and topological data analysis

(TDA) provides a framework for studying the multi-scale topological properties of real-world

datasets. In particular, persistent homology and related techniques, enables the detection and

quantification of topological features in networks and other complex systems. It has become

a powerful tool for analyzing dynamic networks in various fields, including biology, social

sciences, and engineering. This survey aims to provide an overview of the key ideas, construc-

tions, and uses of applied topology in dynamic networks, with a focus on their potential to

uncover hidden structures and properties in complex systems. The cited works cover a wide

range of topics and offer a comprehensive view of the field. Notably, this is a robust and ex-

citing area of research with many active researchers. Future research is expected to continue

expanding our understanding of applied topology and its applications in the analysis of dy-

namic networks.

37

3.2.1. Simplicial Complexes and Persistent Homology

Simplicial complexes are combinatorial structures used to represent the topology of a net-

work81. They provide a natural framework for studying topological properties, such as con-

nected components, loops, and voids. Persistent homology, a method developed by (among

others) Edelsbrunner and Harer80,82, is a technique for quantifying topological features in

simplicial complexes and their persistence across different scales. This technique has been

widely applied to the analysis of dynamic networks, providing insights into their structure and

evolution.

3.2.2. Mapper Algorithm

TheMapper algorithm, introduced by Singh, Mémoli, and Carlsson261, is another technique

in applied topology that has been used for analyzing dynamic networks. The algorithm con-

structs a simplified representation of the network by clustering nodes based on a given func-

tion and then connects these clusters to form a topological graph. This method has been em-

ployed in various applications to reveal the underlying structure and organization of dynamic

networks.

3.2.3. Biological, Sociological, and Economical Systems

Applied topology has been used to analyze dynamic networks in biological systems, such as

protein-protein interaction networks229, gene regulatory networks46, and brain networks103.

These techniques have been successful in identifying topological features associated with spe-

cific biological functions and processes, as well as revealing the organization and dynamics of

these networks.

In social and economic systems, applied topology has been used to study the structure and

evolution of social networks300, collaboration networks224, and financial networks235. These

analyses have provided valuable insights into the formation and stability of communities, the

38

impact of network topology on information diffusion, and the identification of critical nodes

and links.

3.2.4. Sensor and Transportation Networks

Applied topology has also been employed in the analysis of dynamic networks in engineering

and technology, such as sensor networks68, communication networks30, and transportation

networks168. These applications have led to the development of new methods for network de-

sign, optimization, and control, as well as improved understanding of the impact of network

topology on system performance and resilience.

3.3. Machine Learning with Graph Neural Networks

Machine learning techniques, particularly graph neural networks (GNNs), have emerged as

powerful tools for learning complex patterns and making predictions in dynamic networks.

Machine learning is a truly enormous area of study, representing some of the most cited sci-

entific works of all time. No person (but perhaps well-trained neural network) could hope to

keep up with the literature in this area. The term itself has many different meanings and cov-

ers everything from neural networks to Bayesian learning, genetic algorithms, and so much

more. Even restricting our scope to GNNs in the context of dynamic networks provides a vo-

luminous literature, so we present a small sampling to address both theoretical and practical

aspects, and highlighting the potential of these techniques to advance our understanding and

analysis of complex dynamic systems.

As a general matter, machine learning is moving towards large, pre-trained networks and

then constructing task-specific fine-tuned, zero-shot, or few-shot networks. This paradigm

would be the gold standard for dynamic networks, but this setup does not yet exist in this

area: it would require the training of a large-scale general network for extracting features from

dynamic networks.

39

3.3.1. Machine Learning and Dynamic Networks

Machine learning is a subset of artificial intelligence that focuses on developing algorithms

capable of learning patterns from data and making predictions or decisions. In the context of

dynamic networks, machine learning techniques have been employed to address various tasks,

including link prediction318, community detection304, and anomaly detection233. These tech-

niques have been successful in uncovering hidden structures, predicting network evolution,

and identifying critical events in dynamic networks.

3.3.2. Graph Neural Networks

Graph neural networks (GNNs) are a class of machine learning models specifically designed

to handle graph-structured data299. GNNs combine node features with the network’s topol-

ogy to learn powerful representations capable of capturing complex patterns in the data.

GNNs have been employed to address a wide range of tasks in dynamic networks, including

node classification108, link prediction310, and graph generation306.

GNNs have been adapted to handle dynamic networks through several approaches, such

as recurrent graph neural networks (R-GNNs)255, spatio-temporal graph convolutional net-

works (ST-GCNs)302, and temporal graph attention networks (TGATs)301. These models

incorporate temporal information into the graph learning process, allowing them to capture

the evolution of the network’s structure and features over time.

3.3.3. Scientific Systems

Machine learning and GNNs have been applied to dynamic networks in biological systems,

such as protein-protein interaction networks93, gene regulatory networks182, and neuronal

networks220. These techniques have contributed to the identification of novel biomarkers, the

prediction of disease progression, and the understanding of the dynamic processes underlying

cellular functions.

40

In social and economic systems, machine learning and GNNs have been used to analyze

and predict the behavior of dynamic networks, such as social networks282, financial networks309,

and online user behavior319. These techniques have enabled the identification of influential

individuals, the prediction of market trends, and the understanding of user preferences and

interactions over time.

Dynamic networks are also prevalent in various engineering systems, such as sensor net-

works170, transportation networks313, and communication networks50. Machine learning

and GNNs have been employed in these systems to optimize network design, improve system

performance, and enhance resilience against failures and attacks.

3.4. Dynamic Networks So Far

As a general matter, there is no unified framework for studying dynamic graphs. Instead, we

have piecemeal techniques in tackling specific tasks or applications. In conferences like Com-

plex Networks or through the use of graph tools like graph motifs and kernels, we have made

much progress in the past decade in analyzing dynamic networks. This work seeks to provide

a unified view on the subject.

Dynamic networks go by many names: temporal networks, spatiotemporal networks,

graph dynamical systems, etc. As a class of complex systems where nodes and edges may change

over time130, we provide a survey with an overview of networks from a dynamical systems and

complex systems perspective. We discuss their characteristics, modeling approaches, analysis

methods, and various application domains.

3.4.1. Characteristics and Challenges

Dynamic networks capture the evolving relationships between entities over time. These net-

works are characterized by time-varying structures and properties38, which pose unique chal-

lenges in their analysis, such as handling incomplete data, scalability, and the detection of

temporal patterns1.

41

Several approaches have been developed to model dynamic networks, including time-aggregated

graphs206, time-varying graph models273, and continuous-time models105. Time-aggregated

graphs represent networks as a sequence of static graphs, while time-varying graph models

consider discrete time steps with varying node and edge sets. Continuous-time models use

mathematical frameworks, such as stochastic processes or differential equations, to describe

network evolution.

Methods for analyzing dynamic networks range from traditional graph analysis techniques

to more recent machine learning-based approaches121. Techniques such as temporal cen-

trality154, community detection115, and link prediction292 have been adapted to handle the

temporal nature of dynamic networks. Additionally, machine learning methods, particu-

larly graph neural networks, have shown promising results in tasks like node classification and

graph generation318.

3.4.2. Application Domains

Dynamic networks are present in various domains, including social networks263, biological

networks21, chemical networks, financial networks187, physical networks, transportation net-

works313, sociological networks, communication networks50, etc. Analyzing dynamic net-

works in these domains has enabled insights into network resilience, influence maximization,

trend prediction, and the identification of hidden structures. While there is no comprehensive

technique for analyzing all of these different network types, dynamic networks arise naturally

in nearly every scientifc (and many non-scientific) domain. As systems become more compli-

cated with long-range interactions and as we continue to generate massive datasets in our era

of Big Data, we have more and more opportunities to analyze real-world systems through the

lens of dynamic networks.

42

Part II

Main Results

43

Rumor, that which no other evil thing is faster.

Publius Vergilius Maro (Virgil)

4
Tracking Virality in Connected Populations

V
irality is an informal and formal emergent property in a wide range of dynamical

systems. This chapter covers two studies of viral systems over dynamic graphs. Each

study involves a collection of people, connected in various ways, with some “viral” element

traveling across this population. In both studies, we construct a parametric model to track this

spread and then we answer several typical questions about each model:

1. What does the theory predict for the dynamics of these models?

2. How well do these models explain real-world data?

3. Given real-world data, what are our estimates for the underlying model parameters?

While no model can capture the world around us with perfect fidelity, each model contributes

44

to our understanding of dynamical systems, especially where there is an underlying dynamic

network. Each model builds upon existing literature to capture some novel or unexplored

element of viral spread. While each model has increased computational costs, mathematical

operations over networks can be vectorized and dispatched on specialized computing devices,

e.g. a GPU.Moreover, each model as implemented uses a simple notion of dynamic networks;

while there are certainly additional dynamics that could be incorporated into each model, the

main contribution for each study is the introduction of a dynamic network.

The first study examines the nature of viral information propagating through a social net-

work with constantly shifting connections and interests. In it, we provide a flexible framework

that has both global model parameters and local model parameters that are specific to the

“people” within our system, all sitting on top of a graph that can also be controlled through

additional parameters. Then, for practical purposes, we further constrain our system under

certain regularity assumptions and select base model parameters based on real-world observa-

tions. The second study takes a similar approach, but for analyzing an actual virus (COVID-

19) spreading through a country. Just as with the first study, we create a flexible framework

that has global model parameters and local control parameters for the specific graph struc-

ture, which we initialize with real-world data and certain simple assumptions. Taken together,

these studies provide two different but related models on studying viral spread throughout

a population, each providing a different set of control parameters. Arising from particular

applications in mind, we test each model on a paragon example and demonstrate the capac-

ity to capture salient properties of real-world data, the first hinging on Facebook data and the

second predicting asymptomatic spread characteristics of COVID-19.

45

4.1. Information as a Virus

This project focuses on the spread of viral information in a dynamic social network, as if it

were a virus being transmitted through a population. Based on the Daley-Kendall model from

1965, this study provides an updated perspective in this setting. The key innovation is the

introduction of personalized feature vectors that control spread in an ever-changing social

graph based on Facebook data. We provide both a differential and agent-based model, perform

some analysis typical of dynamical systems, and then provide experimental evidence of the

model’s ability to capture a real information system. Building upon a previous publication,

we extend these ideas by providing a more detailed theoretical analysis and then extending

these ideas in Section 4.2.

4.1.1. Introduction

Background

A rumor is defined as a “proposition for belief of topical reference disseminated without offi-

cial verification,”155 a notion that lends itself quite well to the imagination of applied mathe-

maticians. The mathematics of rumor spread is somewhat explored, beginning with the epi-

demic model applied to information spread in a population by Daley and Kendall in 196567.

This model’s assumptions of homogeneous interactions and its lack of well-defined param-

eters likely caused “the superficial similarity between rumors and epidemics to break down

on closer scrutiny”67. Nonetheless, the similarities of knowing and spreading a rumor, and

having and spreading a disease, share parallels that only deviate in some of the intricacies of

their mechanism. In both, an “infected” individual in a network desires to (or inadvertently

spreads) their “condition.” With disease, one of the mechanisms of suppressing spread is vacci-

nation; with rumors it is an individual’s eventual boredom and desire for novel information.

More recent models of rumor spread in a population examined the dynamics through ran-

domized networks150, examining the rumor transmission in exponentially distributed net-

46

works197, and the time of rumor spread given contacts with the initial spreader in a regular

network92. There is increasing emphasis on the structure of networks themselves and how

this affects model dynamics312,228,227,18,317. Many of these models derive their structure and

dynamics from complex yet internally homogeneous simulations of how individuals interact

with rumors. However, with the advent of massive social media networks that allow sharing

of information on a large scale, more analyses are focusing on behaviors (such as rumors) that

are frequent in social media networks. Simulations of rumor spread through social media are

becoming increasingly realistic by including “forgetting” mechanisms typical of social me-

dia315, comparing time of rumor spread in random networks as compared to structured net-

works173, methods for combatting rumor spread in social networks281, and examining rumor

spread on gaming networks110.

The ISTK Model

In this work, we consider a stochastic rumor spread model with four categories of individuals:

the “ignorant” individuals, those who have never heard the rumor; the “spreaders,” those that

have heard the rumor and are actively spreading it; the “stiflers,” those who have heard the ru-

mor and actively suppress further transmission (either because they now consider the rumor

old news, or they never believed the rumor in the first place); and finally the “knowledgeable”

population, those who have heard, but have subsequently forgotten the rumor. The rumor

initializes in only a small fraction of the population, and spreads as the individuals interact.

The “ignorant,” “spreader,” and “stifler” populations were presented in the Daley-Kendall

model67, but we have added a “knowledgeable” population, which has been postulated before

as necessarily distinct from the ignorant population314,315. Assuming otherwise presumes that

the attitude of an individual who has forgotten a rumor is identical to the behavior of an in-

dividual who had not yet heard the rumor. We account for this distinction with the addition

of the knowledgeable population to the Daley-Kendall model. This model is henceforth re-

ferred to as the Ignorant, Spreader, sTifler, andKnowledgeable (ISTK) model. We use three

variations of this model: one differential, and two agent-based. The differential ISTKmodel

47

simulates a homogenous group of people, and has no awareness of the concept of individu-

als; it simply “moves” proportions of the group of people from one population to another

over time. The first agent-based model, the “Simple model,” simulates individuals through

several iterations (rounds) over time. The model incorporates a network that represents the

connections between individuals, which in this case is based off of Facebook friends. The sec-

ond agent-based model, the “Feature-vector model,” incorporates demographic data of these

Facebook users.

In the “feature vector model,” we further consider 1. how a rumor might be targeted to-

wards a certain demographic, and 2. how the “similarity” between a rumor and an individual

affects a user’s behavior. The original social network dataset included many different types

of “features:” education level, gender, and language. Instead of assuming that every individ-

ual is equally likely to spread any rumor, we assumed that the rumor’s targeted characteristics

and the demographic information of each individual affected the likelihood of the rumor to

spread. In this way, we equipped the rumor with a personality. If the individual from whom

they heard the rumor was more similar to them, they were more likely to believe the rumor,

and if the rumor’s characteristics was more similar to theirs they were more likely to spread

the rumor. There is evidence to suggest that people are more likely to believe information that

comes from others with similar values100. The similarity of the rumor’s personality to that of

the individual’s influenced the individual’s probability to spread the rumor. The theory of

confirmation bias suggests this behavior, insofar as we are more likely to accept information

that confirms our previous beliefs293. The characteristics of the rumor itself contribute to

how the rumor is spread between individuals in the Feature vector model, Section 4.1.3.

48

ISTK Model Equations

Figure 4.1: The ISTK Model. This network‐driven model is inspired by the
traditional SIR viral model and then Daley‐Kendall model. There are four
compartments: the Ignorant, Spreader, sTifler, and Knowledgeable classes.
The arrows in this diagram characterize the flow between the classes and
the relevant controlling parameters.

I , S, T , andK , represent the total Ignorant, Spreader, Stifler, and Knowledgeable popula-

tions respectively. We also designateN to represent the total size of the population and en-

force the invariant

N = I + S + T +K

(n.b. we assume no one dies or is born, so N stays constant, i.e. dN
dt

= 0).

There are several common parameters to all four differential equations, as follows:

• We represent the “credibility” of the rumor, expressed as a probability that the Ignorant

believes the Spreader, as c. Therefore (1 − c) the complement of c is equivalent to

being incredulous of the rumor.

• To represent the chance per day of interaction, l, we take the complement of the overall

probability that an individual does not talk with a single Spreader. It is computed by a

set of Bernoulli trials with success probability ρwhere ρ = 1− S
N
and number of trials

to be τ (i.e. l = 1− ρτ).

• We use d to represent the number of days after which a population spontaneously for-

gets a rumor. Note that in our equations, we use 1
d
because d ∈ [1,∞), so 1

d
∈ [0, 1].

49

We use α1 to describe the loss of novelty of the rumor and α2 to describe the chance

that the Spreader becomes a Stifler upon interacting with a Stifler.

The equations for each population follow:

dI

dt
= −clSI − (1− c)lSI (4.1)

In Equation 4.1, the first term describes the interaction between Ignorants and Spreaders.

It is dependent on both the size of the Ignorant and Spreader classes, and is proportional to

parameters c and l. The second term of Equation 4.1 accounts for the complement of “be-

lieving the rumor” (being “incredulous” of the rumor) and is proportionate to (1 − c). Both

terms remove some of the population from the Ignorant class and lead to the Spreader class

and Stifler class respectively. Although we can simplify this equation to (−lSI), we want to

distinguish the credulous (c) and incredulous (1− c) group of people.

dS

dt
= clSI − 1

d
S − 2α1lS

2 − α2lST (4.2)

The first term of Equation 4.2 is the addition of members from the Ignorant class who be-

lieved the rumor. The second term characterizes the population which spontaneously forgets

the rumor, and hence is inversely proportionate to the Spreader population and d. The third

term of Equation 4.2 accounts for two Spreaders who interact with each other and foster dis-

interest in the rumor (since the rumor has lost its novelty). When these two Spreaders interact

(S2), we account for the chance that each Spreader could become a Stifler by multiplying the

term by 2. The final term represents the disillusionment power of a Stifler when interacting

with a Spreader.

dT

dt
= 2α1lS

2 + α1lSK + α2lST + (1− c)lSI (4.3)

In equation 4.3, the first of which describes the removal of members from the Spreader

class into the Stifler as defined above. The second term describes the population of Knowl-

50

edgeable individuals who become a Stifler, as described in Equation 4.2. The third and fourth

terms of Equation 4.3 describe the addition of members to the Stifler population from the

Spreader and Ignorant populations, respectively.

dK

dt
=

1

d
S − α1lSK (4.4)

Finally, Equation 4.4 describes the individuals in the Spreader class who forget the rumor

and become Knowledgeable; and the population which loses the novelty of the rumor and

become Stiflers.

In our model, we do not consider the interaction between a Stifler and an Ignorant because

neither one has a reason to broach the subject of a rumor (the Ignorant because they do not

know and the Stifler because they no longer care). Moreover, by a similar logic, when a Knowl-

edgeable and Stifler interact, there is no change in populations.

Our equation differs from the Daley-Kendall model67 primarily through augmenting the

system of the Knowledgeable class; individuals in this category would have been in the Igno-

rant of Stifler classes in the original model. The Daley-Kendall model also assumes all individ-

uals who hear a rumor will believe it, whereas in our case, this is not required to be true and

can be controlled through parameter c. Finally, note that in the Daley-Kendall model it is pos-

sible to become ignorant after hearing the rumor; in the ISTKmodel, this is not possible.

4.1.2. Differential Model

Modeling Applications

By solving the differential model, we can compare a continuous model to a stochastic agent-

based model. We can further how parameters based on face-to-face interaction had an impact

on rumor spread versus interaction over a network (described by an adjacency matrix). More

precisely, we examine how long it takes a rumor to reach a significant proportion (90%) of the

population and the effect on the amount of time until steady states were reached with pertur-

51

bations in initial parameters. To do this, we leverage data on a model of consumer goods.

Estimating Parameters

The parameters necessary to estimate were credibility, the loss of novelty, and the number of

close interactions for an individual. Using consumer statistics on perceptions of reliability

of information from different sources, we initially estimated the credibility c = 2.8
7

149. Es-

timations in number of close contacts varied from 12–26 people per day, varying based on

age39,201,83. We took the average number of close contacts to be 22 (i.e. τ = 22, which de-

termines our parameter of interaction l). Although the differential model itself does not

change with the medium of Facebook, the meaning of τ changes. Instead of 22 close inter-

actions per day, we selected an appropriate analog, in that we assumed the average individual

reads approximately 22 posts per day. We estimated the value representing loss of novelty at

α1 = .01, and α2 = .02, since the spreaders will have a stronger effect on the stiflers. In

all cases, these were the “baseline” parameters, and were only modified for the Feature vector

model, in which case parameters c and α1 were based on the features vectors of agents, and

rumors. Sensitivity analyses for c, and δ were run on the interquartile ranges of the studies on

which they were based. α1 was an approximated variable, so we simply run as small of an α1

variable that the differential model was capable of processing, up to an α1 value of .25.

4.1.3. Agent‐Based Models

Simple Model Method

In order to incorporate a network into our model, we constructed an agent-based model (a

useful stochastic technique for modeling dynamics with graphs)264. We discretized the data

we used for the differential model, in essence using our parameterized proportions as the

probabilities that certain individuals would move between populations. Using data from the

Facebook network, we allowed individuals to communicate only with those to whom they

are connected. Since agent-based models are based on probabilities, and are inherently non-

52

deterministic, we essentially have to performmany “trials” of the model. Each trial consists

of initializing a set of “agents” into one of the four populations: Ignorant, Spreader, Stifler,

or Knowledgeable. In each trial, there are several time-steps, at which point each agent has

a “turn.” At each turn, an agent can interact with other agents, and move from one popula-

tion to another. The rules that define what an agent can or cannot do on a turn are described

by the ISTKmodel. For example, in the differential ISTKmodel, an Ignorant becomes a

Spreader by the term clSI . Translating this term to the agent-based model: lSI represents

the chance that an Ignorant and Spreader interact (as characterized by the network), and c rep-

resents the credibility of the rumor, as expressed as a probability. We performed 400 distinct

trials, where each trial constituted 22 days.

Each person began as ignorant, except for a randomly selected subset of the population,

who became spreaders. The chance of becoming a spreader was set at 5% distributed ran-

domly (i.e. without considering the network). Because it is a large population (4 039 indi-

viduals), each trial would have had around 202 spreaders, but the actual number of spread-

ers varies from trial to trial. Additionally, it was possible for all of the spreaders to be concen-

trated in a subnetwork or a “pocket of friends.”

To begin each day, every user was assigned an amount of time logged in by picking ran-

domly from a normal distribution with a mean of 23minutes and a standard deviation of 4

minutes, bounded above 0. We made the assumption that the majority of people will proba-

bly be logged on during an 8 hour period of the day; therefore, we only modeled 480minutes

per day, within which the users select their logon time (n.b. users also could not log on in the

last 23minutes of the day, as 23minutes a day was set as the mean browsing time). Each user

had a probability of 14/365 to “post” in a given day. Then, based on the time that they are

“logged on,” users were assigned a “time” which they made their post form a uniform random

distribution. This occurred on each of the 22 days that constituted a trial.

Each “day,” after determining the logon time, posting order, and post time, the simulation

of rumor spread began. Every minute, each user could “view” posts written at that minute

from people to whom they were directly connected. Users were also capped at reading 10

53

Poster State

I S T K

R
ea
de
rS

ta
te

I — P(S) = c = 0.8

P(T) = 1− c = 0.2

— —

S — P(T) = α1 = 0.01 P(T) = α2 = 0.02 —

T — — — —

K — P(T) = α1 = 0.01 — —

Table 4.1: Next reader state for possible interactions between reader and poster. P(X) denotes
probability that reader changes to classX

posts a minute. If a poster was a spreader, they had chance δ = 1
d
= 1

22∗480 of forgetting

the rumor. Then, based off of the probabilities in Table 4.1, the state of each person was im-

mediately recalculated. Therefore, if a person changed state at a particular minute within a

day, then that person would interact as that state with other users in every minute after that.

Finally, after 22 days, the trial ended.

Feature Vector Model Method

This model followed a similar logic as the preceding agent-based model. However, the differ-

ent interactions accounted for the similarity between two agents or the similarity between

an agent and the rumor. First, a baseline feature space of dimensionD = 195was taken as

a subsample from the Facebook dataset190. Each feature corresponds to some data from the

original Facebook profiles, like language, identified gender, etc. Though we can access realis-

tic demographic data, the individual features are not particularly important. We are simply

finding a metric for personality similarity to demonstrate that we can model how targeted ru-

mors spread in the context of a (social) network. It is a reasonable assumption that a piece of

viral information can be in fact targeted with demographic information. We then examine

how assuming personality similarity influences credibility of rumors impacts rumor spread

in a population. Each feature is boolean, taking either “true,” “false,” or “N/A” if the value

is unknown. Any “N/As” for a given feature were filled in randomly with some probability

54

p, where p = xt
xf+xt

, xt is the number of true values there were for a particular feature across

the population, and xf is the corresponding number of false values. The rumor itself was also

initialized with a particular feature vector, each term generated randomly. A “most similar”

rumor vector was generated, which was created by rounding every p to 0 or 1 for each feature.

The “most dissimilar” rumor vector was the logical complement of the “most similar” rumor

vector.

Next, pairwise angular similarity Sp,r was taken between the two interacting agents, poster

and reader, where

Sp,r = cos(θ) =
vr · vp

∥vr∥∥vp∥

where the poster has feature vector vp and the reader has feature vector vr. Angular similarity

between the feature and the reader was also determined, where

Fr = cos(θ) =
vr · f
∥vr∥∥f∥

and f is the feature vector of the particular rumor.

We also determined a “baseline” b = 0.5, which is the “influence” of an original parameter,

and where 1 − b = 0.5 represents the influence of the interaction of feature vectors; this base-

line is simply the expectation of the Bayesian uniform prior. This baseline determined how

much each parameter was affected by the similarity scores of feature vectors, and guaranteed

the values would be at least half of the original model values. The simple agent-based model

was run again, with bc+ (1− (bc))Fk substituted for c and bα + (1− (bα))Sp,r substituted

for the respective α values and agents i and j.

We tested 86 different feature vectors, with 100 trials each. In addition for our simulated

“most similar” rumor and the “most dissimilar” rumor, we ran 300 repetitions with each ru-

mor, of the stochastic agent based model, with the same population.

55

4.1.4. Results

Differential Model and Simple Agent‐Based Model

Figure 4.2: The result of numerically solving the differential model over
22 days. Each line represents a particular population class, as indicated
by the legend. The total population does not change over time and is
normalized to 1.

For the differential model, as is demonstrated in Figure 4.2, the spreader and ignorant popu-

lations become negligible by the end of the 22 days, and the knowledgeable and stifler popula-

tions stabilize above 0. The ignorant population declines, as the spreader population initially

grows, and then declines as the stifler population grows. In the differential model, essentially

all individuals learn about the rumor. Varying the parameters impacts how quickly the popu-

lation hears of the rumor, but not the ignorant and spreader populations.

56

Figure 4.3: Results of the sensitivity analysis of parameter α1 in the differential model. For each
value of α1 the time at which 75% of the population had been exposed to the rumor is recorded.

Figure 4.4: Sensitivity analysis of parameter c in the differential model. For each credibility value
the time at which 50% of the population heard the rumor.

57

Figure 4.5: Results of the sensitivity analysis of parameter d (average days to forget) in the differ‐
ential model. The hour that 50% of the population heard the rumor is recorded for each value of
d.

Looking at Figures 4.3, 4.4, and 4.5, we can see that increases in credibility decrease the

amount of time until the rumor spreads to the majority of the population. The increase in

average days to forget increases the time by which half of the population has been exposed to

the rumor. The sensitivity analysis indicated that the time to reach the steady state depends

most heavily on the α values. As α increases, the time at which 75 percent of the population

hear the rumor increases. When varying parameters, the α2 value was a constant double of the

α1 value. (See Table 4.1 for definitions.)

58

Figure 4.6: Results of the agent‐based model. Solid line indicates median proportion of population
across the 400 trials; shadow indicates IQR.

By comparison, in the analogous agent-based model (Figure 4.6) there are some individuals

who do not hear the rumor at all by the end of the simulation.

Figure 4.7: Box‐and‐whisker plot comparing the steady states in Figure 4.2 (differential model) and
the end states in Figure 4.6 (Agent‐based model).

In this agent-based model, as expected in a stochastic model, there are pockets of “igno-

rance” that remain. Additionally, the slopes of the population graphs are more gradual, rather

59

than moving sharply, as in the differential model. While the dynamics of how the differen-

tial model and the simple agent-based model reached their steady-states is different, the end

states are generally similar, as seen in Figure 4.7. This shows a direct comparison of the steady

states from the differential model shown in Figure 4.2 and the stochastic end states from the

agent-based model in Figure 4.6. Though the differential model has no network, and is deter-

ministic, we find that the agent-based model ends with essentially the same steady states. Both

models seem to confirm that with the baseline α values we chose, most people end up as ru-

mor stiflers and, most people will be exposed to the rumor. Very few people end up forgetting

the rumor entirely.

Agent‐Based Model with Feature Vectors

Figure 4.8: Results of the most and least similar feature vectors to the population in the agent‐
based model (average across 300 trials).

60

Figure 4.9: Density of the proportion of the population who heard the rumor after 22 days with
the most and least similar rumors (300 trials).

Figure 4.10: Linear model of the relationship between the final percentage of the population heard
rumor and average similarity score of the feature vector (r = 0.538). Shading designates the
95% confidence interval.

When the similarity score is added, even the most similar rumor dies out, as seen in Figure 4.8.

This plot is identical to Figure 4.2 and Figure 4.6, but is the stochastic agent-based case. How-

ever, the average similarity score of a rumor with the population does affect the spread (Fig-

ure 4.9). The most similar rumor to the population spreads to more of the population than

61

does the least similar. The trend from the other feature vectors supports this claim, as demon-

strated by Figure 4.10. The predictive power of the similarity in predicting the number of

individuals who heard the rumor is decent where the bulk of the data lies. (n.b. the way that

we generated most and least similar feature vectors did not guarantee that they were the ab-

solute most or least similar to the population. To make the most similar vector, we rounded

the total proportion of each feature in the entire population to either 1 or 0 to make it binary.

The least similar vector is the logical complement of the most similar one. Therefore, in ran-

domly generating feature vectors, we ended up with a few that were less similar than the “least

similar” feature vector.)

4.1.5. Discussion

There was relatively little difference between the end states of the differential and simple agent-

based models, despite the fact that the former aggregates the population and the latter pro-

vides more granularity. As previously noted by Chierchetti et al.53, in a fully-connected net-

work with push-pull interactions, a rumor will spread to the majority of the population with

high probability. Though our model has a significantly different setup, we came to similar

conclusions as this previous study’s findings, though our model had a fully-connected net-

work and assumed different interactions: individuals only had the opportunity to interact

with the same individuals at every time step, as opposed to choosing new “partners” each

time53. In the agent-based model, not every individual learned about the rumor, and the ad-

dition of some structured social network causes a delay in rumor spread. That is to say, the

effects on one cluster are not immediately transferred to another cluster, as effects upon indi-

viduals must travel through the other individuals in a complex network in order to have large-

scale effects on the population. Thus, the curves are less dramatic, change more gradually, and

there is no guarantee every individual will hear the rumor: by the end of the 22 days essentially

none of the population remains ignorant in the differential model, whereas in the agent-based

model 2.8% of the population remains ignorant. However, the trajectories of the two models

62

are qualitatively similar, suggesting that the agent-based model tends to a vanishing of an igno-

rant population, save for a small connected subnetwork. Just like the claim so well supported

in push models, eventually there is a high probability all individuals will hear the rumor230,8.

The incorporation of Feature vectors in the agent-based model changes the overall spread

of the rumor. Even in the case in which most people hear the rumor (the most similar feature

vector) there remains a significant population that never hears the rumor, a factor of the simi-

larity between individuals and the rumor. Facebook friendships are a relationship that we take

here to model real-world social networks. However, Facebook friends are likely to be more su-

perficial. In fact, the average number of Facebook friends is 338262, yet Dunbar’s number sug-

gests that humans cannot maintain more than 150 relationships due to neocortex size78. The

social network we use shows the spread of a rumor in people who are not necessarily close, but

do interact. Perhaps the feature-vector-based spread in a Facebook network is less effective in

spreading the rumor due to this superficiality of relationships. Perhaps if individuals in a Face-

book network cluster based on features, it would explain how a rumor could die out trying to

navigate a dissimilar subnetwork. As indicated by our results, even where the rumor spreads,

individuals become stiflers so quickly that the rumor dies out before reaching a large propor-

tion of the population. This behavior is familiar to anyone who has been on social media, and

had friends who relentlessly post stories that bear no significance to their personal beliefs or

preferences.

Perhaps networks with clusters of similar people (by their feature vectors) would aid in

the rapid transmission of a rumor across a network. In the feature vector model, spread of

the rumor is a factor of both the similarity of individuals to each other, and similarity of the

rumor to each individual. We speculate that in a community with many highly similar indi-

viduals one could much more easily engineer a rumor to spread through the whole network.

However, an individual hearing the rumor has less to do with their individual traits, than the

similarity of individuals to each other in the population. In Section 4.2, we explore this idea

further by considering a homogenuous group of people and exclude any considerations of

subtle individual variability; instead, we only consider one trait with a sharp difference: if

63

someone is sick, do they have symptoms or not. In other words, we collapse the feature vector

into a single dimension with a binary value instead of providing multiple orthogonal features

with scalar values. This approach, called “TraSIR,” is well-supported by the observations and

results from the approach presented in this section.

Finally, this study also shows that there is nothing in the topology of the network that pre-

vents rumor spread in the simple agent based model, so inoculation against hearing the rumor

is a factor of the general dissimilarity of individuals to each other in the population. We sus-

pect that the inevitable “death” of our rumors may be due to a population of individuals with

a great variety of different feature vectors. Future models should investigate how the similarity

of individuals’ feature vectors impacts the spread of any rumor.

4.1.6. Conclusions

Since the rumor tends to spread rapidly at the start of the simulation (resulting in a corre-

sponding boost in the stifler population), our results inspire the consideration of different

network configurations. However, a rumor spreads rather more quickly in preferentially con-

nected real-world graphs than in common theoretical graphs74. In our case, even the “best-

performing” rumor—one that maximized spread—still died out, but it may be possible to

engineer a rumor that saturates the network. In all, it would seem as though our model, in

part thanks to the advent of increased computing power for simulations, can begin to unravel

the nuances and intricacies of information spread through a social network. By arriving at a

model that uses feature vectors and graphs, we have greater control and specificity in looking

at the spread of viral information, possibly leading us to mathematically “perfect” viral infor-

mation.

64

4.2. Estimating Asymptomatic Viral Spread

This project focuses on the spread of COVID-19 in a dynamic commute network. Based on

the classical SIR model, this study incorporates a simple dynamic network to study the spread

of COVID-19. The key innovation is the introduction of an asymptomatic spread parameter

and fusing a commute network with several small SIR models at the county-level. The key

result is the estimation of asymptomatic spread in the New York City Metropolitan Area.

4.2.1. Introduction

At the outset of the COVID-19 pandemic, the prevalence of asymptomatic cases among in-

fections was estimated to lie anywhere between 17% and 81%214. Given the importance of

this parameter for early health policy decisions213, such a high level of uncertainty was a major

roadblock. With testing now widely available, this issue has largely dissipated, with estimates

of asymptomatic rates between∼30% and∼40%181,256. To prevent such difficulties in fu-

ture epidemics, it would be highly beneficial to have computational tools for estimating the

asymptomatic rate of infected individuals right at the beginning of an epidemic.

Infectious disease spread is classically modeled using compartmental models. The popu-

lation is assigned to distinct compartments (for example, the susceptible, infectious, and re-

covered compartments in the widely studied SIR model)152, with rates at which individuals

move from one compartment to another. When applying these compartment-based epidemio-

logical models, it is impossible to predict the true prevalence of a virus early on in a pandemic

without widespread random testing: indeed, even a tiny fraction of a population showing

symptoms for the disease is compatible with a widespread infection. To estimate via com-

putational modeling the fraction of infectious individuals that are asymptomatic, known as

the asymptomatic rate ρ, requires additional information. Here, we show that considering in-

formation about how a virus spreads in a spatial manner—not just between compartments

at a single location—can be leveraged to estimate ρ. The intuition is that, while individuals

65

travel between locations and this contributes to viral spread, individuals who feel sick (i.e., are

symptomatic) tend to curb travel, which in turn yields a distinguishing observable between

symptomatic and asymptomatic carriers.

Here, we introduce traSIR (pronounced “tracer”), a network traffic-based SIR model,

which combines the classic SIR compartmental model with network modeling. As with the

ISTKmodel introduced in Section 4.1, we incorporate a dynamic network to more precisely

model spread dynamics64. In traSIR, we have a network where each node is a location (e.g.,

a county or ZIP Code), each location is associated with a compartmental model, and edges

in the network represent frequent travel between the locations (e.g., commuting). TraSIR

additionally models asymptomatic and symptomatic infections, together with a dampening

effect on viral spread for symptomatic infections. Our primary contribution is to demonstrate

the utility of traSIR in estimating the asymptomatic rate of an infectious disease using only

knowledge about symptomatic infections across geographic locations, as well as information

about typical travel between locations.

We begin with theoretical results relating the asymptomatic rate of infection to other key

parameters of the model (e.g., infection and recovery rates). Since these key parameters are

not known a priori and must be estimated from the data, we next assess how well parameters

of a traSIR model can be estimated using only knowledge about symptomatic infections. In

particular, we simulate disease spread using traSIR, and then perform empirical parameter esti-

mation using the number of symptomatic infections over time across locations to estimate the

asymptomatic rate ρ. Across a wide range of parameters, we find excellent agreement between

the actual and estimated ρ values. Finally, we analyze the number of reported COVID-19 in-

fections across the New York metropolitan area during the first wave.

The method behind traSIR seeks to combine topological flow information with diagnos-

tic data and behavioral variations. It makes use of a number of observable nonlinearities: (i)

in the absence of public health measures, a multiplicative decrease in the symptomatic rate

causes a forward time-shift in the infection curve relative to its measurable baseline; (ii) detec-

tion of carriers grow superlinearly in the number of symptomatic cases; (iii) the number of

66

newly symptomatic cases is largely determined by the asymptomatic neighbors in the network;

(iv) asymptomatic carriers have a different transmissibility rate169. Our platform, traSIR, is

the first of its kind to integrate heterogeneous data on a large scale to recover critical epidemio-

logical characteristics directly from network dynamics, in particular the asymptomatic rate.

Further Background

Standard epidemiological models have previously been extended to account for disease spread

across space, but the medium has typically been assumed to be homogeneous32,85, leading to

a diffusive process. Typically, the speed of a wave across the population grows in proportion

to the square root of the reproduction number and the diffusion coefficient. Epidemics have

also previously been studied in random graphs and scale-free networks3,22. Previous work has

also considered the correlation of viral spread with changing commuting patterns as well as

signals from social media or search engines35,169,231,268,269,308; other approaches have integrated

network effects into compartmental models7,20,73,76,174 and some models explicitly entertain

asymptomatic spread and vaccine dynamics164. However, our model integrates both network

dynamics and symmetry-breaking mechanisms to estimate ρ, which is what the traSIR plat-

form offers.

4.2.2. Methods

The Model

We show how to embed the classic SIR epidemiological model152 within a geographic net-

work with known travel rates. The networkG = (V,E) is a directed graph joiningN nodes

(typically, counties), whose edges are annotated with the corresponding mean traffic rates of

commuters. The edge setE includes all the pairs (i, j) such that residents of county i com-

mute to work in county j. We assume the availability of anN -by-N stochastic “commute”

matrixM , such thatMij indicates the probability that someone commutes from county i to

county j on a typical workday.

67

On day t, we denote the number of susceptible and recovered individuals in county i by

si(t) and ri(t), respectively. Among the fi(t) carriers of the virus in the county, we distin-

guish between the ci(t) of them who show symptoms and the ai(t) = fi(t) − ci(t)who do

not. The population size in county i is denoted by ni = fi(t) + si(t) + ri(t) and is assumed

fixed over the period under investigation. For convenience, we may write the right-hand side

as
∑

x∈{f,s,r} xi(t).

The commute matrixM is insensitive to the health status of commuters. However, symp-

tomatic people tend to travel less and this change has great effect on contagion. To capture

this phenomenon, we introduce the decommute rate δ ∈ [0, 1] as a measure of the propensity

of people feeling sick to stay home:

M c = (1− δ)M + δ I . (4.5)

Note that, if δ = 0, being symptomatic has no bearing on commuting. The matrixM c is a

symmetry-breaking device which allows to distinguish between sick virus carriers and the rest.

This difference creates observable nonlinearities in the viral dynamics that we can exploit to

estimate the asymptomatic rate ρ.

The chronology of infection

Instead of stating the model all at once, we introduce it one piece at a time, following its

natural chronology. We fix a county i and trace the changes in the main state variables s, c, a,

r, f , and n. We use specific times for illustrative purposes only.

• Step 1 At 8am on day t, all commuters are ready to go to work. We have fi(t) =

ci(t) + ai(t) and
∑

x∈{s,c,a,r} xi(t) = ni(t) = ni.

• Step 2 At 9am, commuters are at work. This changes the local population into a

transient one, which we denote with a “hat.” By definition of the commute matrix,

x̂i(t) =
∑

jM
x
jixj(t) for x = s, c, a, r, with f̂i(t) =

∑
x∈{c,a} x̂j(t), n̂i(t) =

68

∑
x∈{s,f,r} x̂j(t), andM

x = M for x ̸= c. The transient population at county iwill

now get to mix all day at work and spread the infection among itself.

• Step 3 At 5pm, commuters go home. The new population at county i is denoted

with a bar over the symbol. It consists of the same ni people present at 8am, but with a

different health status distribution. Take the set of infected individuals: it includes the

fi(t) carriers from 8am plus the newly infected. The latter consist of the subset of the

si(t) susceptible individuals who caught the virus by commuting to county j and got

exposed to a carrier in the transient population of j. Note that this includes the case

j = i of non-commuters who were exposed to infected visitors. The chance of anyone

getting sick in this fashion is φj(t) := βf̂j(t)/n̂j(t), where 0 < β < 1measures

the transmission rate: it is the average number of contacts per person per day times the

probability of transmission in a contact between an infected person and a susceptible

one.

The number of newly infected residents of county i is the sum, over all j, of the num-

ber of commuters who went to county j and got infected there: therefore, it is equal

to si(t)ψi(t), where ψi(t) :=
∑

jMijφj(t) < 1 denotes the worktime infectivity

rate: it is the probability that a commuter from i catches the virus at work. We have

f̄i(t) = fi(t) + si(t)ψi(t). Since a fraction ρ of these new infections are asymptomatic,

we have
s̄i(t) = si(t)

(
1− ψi(t)

)
c̄i(t) = ci(t) + (1− ρ)si(t)ψi(t)

āi(t) = ai(t) + ρsi(t)ψi(t) .

(4.6)

• Step 4 At 8am on day t + 1, further mixing will have occurred in county i since the

previous evening. A fraction γ of the infected people will have recovered by then. Writ-

ing

ui(t) = βs̄i(t)

(
c̄i(t) + āi(t)

ni

)
,

69

we have

si(t+ 1) = s̄i(t)− ui(t)

ci(t+ 1) = (1− γ)c̄i(t) + (1− ρ)ui(t)

ai(t+ 1) = (1− γ)āi(t) + ρui(t)

ri(t+ 1) = ri(t) + γc̄i(t) + γā(t).

(4.7)

We note that traSIR involves two rounds of mixing: the first one in the daytime accounts

for inter-county infection (via commuting); the second one (nighttime) models intra-county

infection (within each county). For simplicity, we model recovery in the latter only. (For this

reason, our value of γ might differ from the standard one by a factor of 2. In our experiments,

we set δ to 8/9.)

Parameter Estimation

Given a commute network and daily symptomatic infections across each node in the network,

we develop an approach for estimating the asymptomatic rate ρ. The estimation algorithm

can be viewed as a two-player game in which participants take turns updating their current

estimates of (β, γ) and ρ, respectively. The updating is driven by grid search (and gradient

descent) with respect to a normalized mean-square loss function, which is computed for a

node k across all time points as follows:

L(c, ĉ) =
T∑
t=1

(
c(t)

∥c∥∞
− ĉ(t)

∥ĉ∥∞

)2

.

We slightly abuse notation and use c here to mean a vector in [0, 1]T . We write ck(t) to be the

recorded rate of symptomatic cases in the population in some given county k at time t. If the

county is clear from context, we just write c and c(t).

The normalization makes the loss invariant under scaling. This is a necessary feature given

the noise in the data. Of highest concern is the corruption of the official figures caused by the

inclusion of reported asymptomatic cases via testing and the exclusion of symptomatic pa-

70

tients who do not seek a diagnosis. We assume that the signal-to-noise ratio remains constant

over time; hence that the time series c is available up to an unknown scaling factor. The nor-

malization factors out that uncertainty.

The vector ĉ = ĉ(β, γ, ρ) is the traSIR-predicted counterpart to the factual vector c; the

matrixM and the decommute rate, defined in (4.5), are treated as hyperparameters. We as-

sume that the infection is seeded at county i0. With ρ expected to exert a relatively minor in-

fluence on the transmission/recovery parameters at the seeded node, it is natural to base the

estimate of (β, γ) on the time series ci0 .

Algorithm 2

procedure Estimate(c)

ρ← 0.5

for ℓ = 1, 2, . . . , jmax do

(β, γ)← argmin(x,y) L
(
ci0 , ĉi0(x, y, ρ)

)
[via grid search]

ρ← argminz
∑N

i=1 L
(
ci, ĉi(β, γ, z)

)
[via grid search]

g(x) :=
∑N

i=1 L
(
ci, ĉi(β, γ, x)

)
k ← 0; τ ←∞

while τ > τmin & k < kmax do

τ ← ε(dg/dx)(ρ)

ρ← max{0, ρ− τ}

k ← k + 1

return (β, γ, ρ)

We set jmax = 3 (convergence is quick). The grid search is over a discrete space of size 103

for ρ and 104 for (β, γ). The number of gradient descent steps is kmax = 103; the gradient

descent threshold is τmin = 10−12; and the learning rate is ε = 10−4/NT .

71

Real Data

For the commute network and population data, we rely on the most recent (pre-COVID)

American Community Survey from the U.S. Census Bureau283,284. The nodes in the network

represent the counties; the edges are directed and weighted in proportion to the number of

residents who live in the source county and work in the destination county. We clean up the

data by removing all the edges associated with fewer than 10 000 commuters. This cutoff

threshold balances the need to make the graph more sparse to exclude trivial nodes and aid

in computational feasibility, while also still preserving the significant graph structures. It was

selected by looking at the node degrees and selecting a cutoff within a “gap” in these values.

Graphs are inherently compositional, which means that the behavior of a significant subnet-

work generally drives the behavior of a network as a whole; the formalities of this idea are be-

yond the scope of this work. We also performed some smaller-scale experiments to verify that

selecting a lower threshold for filtering would not meaningfully change the results.

From the resulting graph, we extract the largest weakly connected component, which in

this case corresponds to the New YorkMetropolitan Area. It consists of 44 counties: a visu-

alization of which can be seen in Figure 4.11. For the infection data, we use the New York

Times COVID-19 tracker and focus on the 200 days betweenMarch 1, 2020 and September

17, 2020277,276,61,283,284.

Figure 4.11: This network represents the counties of the New York City metropolitan area. Each state is colored differ‐
ently with Manhattan at the center in black. The node size corresponds to the population in that county. The nodes are
positioned according to the geographic center of each county.

72

Simulated Data

We generate 481 low-discrepancy values of β, γ and ρ, where 0.2 ≤ β, ρ ≤ 0.8, 0.01 ≤

γ ≤ 0.7, using Sobol sequences from the SciPy package. For each of the 481 combinations of

parameters, we run traSIR with the corresponding parameters for 150 timesteps on the New

YorkMetropolitan area population and network data, assuming that there is a single infected

individual in New York County (Manhattan). We further corrupt the resulting symptomatic

population sizes by a fixed unknown scalar.

For validation, we run Algorithm 2 on the corrupted simulation to produce the estimated

parameters (β̂, γ̂, ρ̂). We evaluate the accuracy and tabulate the residuals between the estima-

tion and actual parameters (β, γ, ρ).

4.2.3. Results

The main contribution of this work is to demonstrate empirically that a network-based epi-

demiological model can uncover key parameters of a contagious disease. We provided an intu-

itive explanation for why this might be possible as long as a symmetry-breaking mechanism is

in place for distinguishing among different types of virus carriers. Before we discuss the empir-

ical evidence and validate our approach, we provide a succinct mathematical foundation for

our claim. (This next section can be skipped without affecting the readability of the rest of the

article.)

Theoretical Analysis

We fix the county i and the time t and we drop all mention of twhen it is understood from

the context. By (4.6, 4.7),

73

fi(t+ 1) = (1− γ + βs̄i/ni)f̄i

= (1− γ + βsi(1− ψi)/ni)(fi + siψi)

= (1− γ + βsi/ni)fi

+ (1− γ + β(si − fi)/ni)siψi − (β/ni)(siψi)
2,

(4.8)

where

ψi =
∑
j

M s
ijφj(t)

= β
∑
j

Mij
f̂j
n̂j

= β
∑
j

Mij

∑
k(fk − δck)Mkj + δcj∑
k(nk − δck)Mkj + δcj

.

Recall that f̂i(t) denotes the number of infected individuals in the transient population at

county i at the end of the morning commute. Let f ′
i =

∑
k fkMki be the number it would

have been if we had δ = 0 and henceM c = M ; we derive n′
i =

∑
k nkMki from n̂i(t)

likewise. We have
f̂j(t) =

∑
k(fk − δck)Mkj + δcj = f ′

j − δ(1− ρ)gj

n̂j(t) =
∑

k(nk − δck)Mkj + δcj = n′
j − δ(1− ρ)gj,

(4.9)

where gj = f ′
j − fj . This allows us to rewrite ψi as

ψi = β
∑
j

Mij

(
f ′
j − δ(1− ρ)gj
n′
j − δ(1− ρ)gj

)
. (4.10)

The worktime infectivity rate ψi plays a key role in traSIR. IfM = I, then ψi = βfi/ni

is the usual infectivity rate in the classic SIR model. Take the case of an arbitrary matrixM

and set δ = 0. Denote byEj(i) the expectation operator indexed by i and defined byMij ,

74

for j = 1, . . . , N . Likewise, we introduce the expectation operatorEk(j), indexed by j and

defined by nkMkj/
∑

l nlMlj , for k = 1, . . . , N . It follows that

ψ
|δ=0
i = β

∑
j

Mij

∑
k

(
nkMkj∑
l nlMlj

)
fk
nk

= β Ej Ek(j)
fk
nk

.

(4.11)

We conclude that, when decommuting is withheld (δ = 0), ψi is an average of infection ratios

fk/nk over counties adjacent to i or adjacent to the latter. This two-degree separation corre-

sponds to individuals from distinct counties meeting at work in a third county. The same idea

holds for δ > 0, but with corrective terms that we discuss below.

At the outset of the pandemic, we can use fi(t + 1)/fi(t) as a proxy for the reproduction

number associated with county i. It follows from (4.8) that

R0 = 1− γ +
βsi
ni

+

(
1− γ + β(si − fi)/ni

fi

)
siψi

− β

fini
(siψi)

2.

(4.12)

Note thatR0 does not have the usual form β/γ 59. Together, (4.10) and (4.12) form a system

S(ρ) = 0, which in theory allows us to recover the asymptomatic rate ρ from β, γ, andR0. It

is noteworthy that this requires decommuting. In fact, sensitivity analysis shows that its effect

cannot be negligible. The system S cannot be solved for ρ in closed form. Using traSIR for

estimation can thus be viewed as a numerical solver for S .

Simulations

We demonstrate that Algorithm 2 can accurately recover the infection rate β, recovery rate

γ, and asymptomatic rate ρ in simulated infections across a wide range of parameters, using

just knowledge about the network and the numbers of symptomatic infected individuals. For

each of simulations resulting frommany combinations of parameters (see Methods), we will

use the number of symptomatic individuals for each county over time. In practice, the actual

75

Figure 4.12: This figure demonstrates the predictive power of our estimation techniques per parameter. Each plot com‐
pares the actual and predicted value of a parameter for many different combinations of the two others. As expected, the
estimation of ρ degrades as the actual value gets large. Ultimately, if no one feels sick, behavior does not change and the
method cannot pick up ρ.

number of symptomatic individuals is larger than the number reported, we multiply each of

the resulting symptomatic population sizes by a fixed unknown scalar, and then run Algo-

rithm 2 to produce the estimated parameters (β̂, γ̂, ρ̂).

We find excellent agreement between the actual parameters β, γ and ρ and their estimates

(β̂, γ̂, ρ̂) (Figure 4.12). Figure 4.12 shows a scatter plot of an estimated parameter against the

corresponding synthetic parameter for the New York area. The Pearson correlation coefficient

is 0.9996 between β and its predicted value. For γ and ρ, it is 0.9983 and 0.9915, respectively.

The absolute residual across all starting parameters has mean 0.023 and standard deviation

0.017. The absolute residual mean and standard deviation for β is 0.0032 and 0.00246; for γ

is 0.0065 and 0.0064; and for ρ is 0.0158 and 0.0163.

Applications to COVID‐19 Data

Having validated our estimation technique on simulated data, we now apply Algorithm 2 to

daily infection numbers from the New YorkMetropolitan area (see Methods), and estimate

the asymptomatic rate ρ, a parameter of critical importance to health policymakers. We find:

β = 0.320 ; γ = 0.046 ; ρ = 0.345 .

76

Figure 4.13: This graph displays real COVID data against TraSIR‐simulated data. The blue ragged line is the reported daily
case count across the New York City metro area, summed across the 44 counties considered here. The orange smooth line
is the simulated daily symptomatic case count with our estimated parameters.

Using these parameters, we also compared the traSIR-simulated symptomatic infection

count with the real reported infection count across the New York metropolitan area (Fig-

ure 4.13), and find good agreement.

4.2.4. Discussion

We have shown via theoretical analysis and simulation that a network-augmented compart-

mental model can effectively estimate the asymptomatic rate of viral infections using only

data about symptomatic infections. We have applied this approach to actual COVID-19 data

and derived an estimate of the asymptomatic rate that matches well with the latest estimates

obtained via extensive random testing.

Our estimates for β and γ are sharper than for ρ. This is no surprise. Both the transmission

rate and the recovery rate have direct influence on the local shape of the infection time series:

the first one has a large effect on the ascent phase of the contagion while the other one’s im-

pact can be felt most acutely in the descent phase. The impact of the asymptomatic rate ρ is

more global and subtle. It can be felt in the speed of the traveling waves and generally operates

on longer time scales. TraSIR is able to leverage such information. Credit for our success must

also go to sheer luck: An asymptomatic rate of∼ 30% is almost ideally sized for estimation.

As we observed earlier, a rate close to 100%would make the task hopelessly difficult. This

77

leaves open the possibility that other nonlinearities in the system can be exploited to boost ac-

curacy when needed. While fast-changing health policy measures and medical breakthroughs

(e.g., vaccination) can present traSIR with major challenges, they also create new windows

of opportunity for novel estimation mechanisms. We hope that this work will plant the seeds

for exciting new research on the messy, difficult, but fascinating subject of uncovering hidden

epidemiological parameters.

78

4.3. Key Takeaways

This chapter on the spread of viruses and viral information over dynamic networks empha-

sizes the importance of understanding how these phenomena spread and can be controlled.

One key takeaway from the chapter is the critical role of network structures in the spread of

viruses and viral information. Different network structures can lead to different outcomes,

such as slow or fast spread, localized outbreaks or widespread pandemics. The behavior of in-

dividuals within these networks also plays a significant role in the spread, and factors such as

susceptibility, infectiousness, and adoption of protective measures can all influence it.

We have also discussed various models that have been developed to simulate the spread of

viruses and viral information over dynamic networks. These models provide insights into the

mechanisms behind the spread and can be used to inform public health policies and interven-

tions. Network-based interventions, including targeted vaccination, quarantine, and informa-

tion campaigns, are highlighted as effective strategies for controlling the spread of viruses and

viral information. However, their implementation requires continuous monitoring and analy-

sis of the dynamic networks to detect potential outbreaks early and take preventive measures.

Overall, these studies emphasize the complexity of the spread of viruses and viral infor-

mation over dynamic networks and the need for a multifaceted approach to control their

spread. By considering the various factors that influence the spread, and by using models and

network-based interventions, we can work towards reducing the impact of undesiriable viral

vectors: whether fake news or a deadly pathogen.

79

Give me a place to stand, and I will move the earth.

Archimedes of Syracuse

5
Fast-Moving Natural Networks

D
ynamism is a term that usually captures the notion of movement over time. As a

heuristic, we tend to say that something is “more” dynamic if the underlying structure

changes more rapidly with respect to time. We can explore dynamical systems at the geological

and cosmic scale, all of which move slowly. At the other extreme of possible scales, we have

quantum systems that arise in statistical mechanics that move faster than we can make certain

measurements. At the human level, these other chapters in this dissertation consider systems

that operate on the scale of “days,” whereas this chapter focuses on what we can study on the

scale of “seconds.”

We will concern ourselves with a fast, rich, and ancient system of interest: sports. In par-

ticular, we turn our attention to basketball, which is both fast-moving and has a lot of player

80

interaction. After all, we may not find so many dynamic networks in the context of running,

even if the sport moves quickly. There are a number of properties that make basketball inter-

esting beyond its dynamism: there is rich and accurate data; we have a prior understanding

of the intended dynamics (i.e. the rules of the game), and the network space is relatively small,

which makes it computationally tractable. Although there is certainly a rich geometry in the

dynamics of basketball, this chapter will demonstrate how the topological abstractions given

by dynamic networks can sufficiently capture essential elements of the game.

We will proceed with two studies, one focusing on techniques in topological data analysis

and the other leveraging statistical models and machine learning. Each study has a dynamic

network at its core, but they are fraternal twins: out of the same data, we produce completely

different types of dynamic networks and have two unrelated tasks that we excel in.

81

5.1. Basketball through Applied Topology

Here, we lay the foundation for looking at basketball data, which naturally produces trajec-

tory data. While we could take typical geometric approaches to trajectory data, this section

provides a novel pipeline using techniques in topological data analysis. In particular, we con-

struct a dynamic network that represents how players are “connected” under some reasonable

notion of a metric. Then, we consider the simplices induced by the trajectories of players as

they cross these networks: in other words, we construct dynamic paths through our dynamic

graphs. From here, we can use various techniques in statistical learning to understand and

characterize these types of crossing sequences.

5.1.1. Introduction and Motivation

FromMarchMadness to the NBA, basketball is an incredibly popular sport in the USA. Part

of the excitement of basketball comes from how quickly the game moves: unlike American

football or soccer, points are scored frequently. Players move rapidly across the court, passing

the ball between each other. From a mathematical perspective, these players produce trajecto-

ries across a small bounded rectangle inR2. Of course, these trajectories are far from chaotic:

indeed, players move in particular ways to maximize their scoring potential or to prevent the

other team from scoring.

A discerning fan of the sport can also further tell which movements correspond with a

specific type of “play.” A play is a well-known pattern of player movement that is deployed

within a larger strategy within the game. However, one of the beautiful aspects of the sport is

that the boundaries between plays are loose: one play merges into the next without an obvious

delineation. Moreover, plays, though well-defined, can vary tremendously because a small ro-

tation, translation, or warping of player movements do not typically change the type of play.

Finally, plays are oftentimes interrupted, curtailed, or elongated with respect to time. In other

words, plays have fundamental structural properties that define them, but have a slew of in-

82

variances that make them tough to capture precisely. In this study, we leverage techniques

in computational geometry to extract important features of player movements; then, in or-

der to handle these invariances, we use constructions from topological data analysis (applied

topology) to perform play classification based on topological (rather than strictly geometric)

properties.

Notably, basketball plays are not strictly invariant to typical transformations in the mathe-

matical sense. Shifting a play by one foot likely does not matter, but shifting by ten feet will.

Therefore, our setting sits somewhere in between geometry and topology; we have to perform

adept multi-scale analysis. In all, we construct a pipeline by defining a notion of “edge cross-

ings” that extract topological data from trajectories via the known geometry of a basketball

court. From there, we use spectral clustering to classify plays and validate our results using

manual review. To this, we use a variety of tools from analysis, geometry, and topology. We

being by rendering a set of useful definitions from the literature, then provide our construc-

tions, and finally display empirical results from the data alongside some concluding notes.

While not perfect, our overall aim of play segmentation and classification is somewhat success-

ful and we can distinguish between important types of plays.

5.1.2. Background

Trajectory

Trajectory analysis is a general problem that poses interesting applications in mathematics,

computer science, and electrical and computer engineering: from geometric approaches

to reconstruct flight paths of lost planes322, to tracking vehicles with heterogeneous sensor

data.280,24. In the context of this work, we will consider the trajectories of basketball players

that they make across the court. Moreover, we will attempt to uncover the underlying, salient

formations that arise from a game of basketball.

In general, we consider a “trajectory” as a continuous position function, mapping from

time to a plane or three-dimensional space. Moreover, “trajectory data” is collected as a dis-

83

crete sample of points from an underlying trajectory.

Definition 5.1.1 (Trajectory). To formalize this concept, we can write a trajectory y as

y : R→ Rn

y : t→
(
y1(t), . . . , yn(t)

)

where the yi’s are some continuous scalar functions and t is the time variable. We may define

a trajectory y with an interval as its domain, rather than all ofR.

Remark (Applications). In our applications, n = 2, 3. When n = 2, we are considering

a trajectory on a plane, which results in a plane curve. For basketball, our principal dataset

provides mostly plane curves. When n = 3, we are considering a trajectory in space, which is

also called a space curve. Our dataset does include some interesting z-position data; we do not

explore data in this dimension in detail, but it could be salient with future study.

Typically, trajectory data is given as an ordered set of points inRn. In particular, we have

the position data for some object represented as a time series, which we can further formalize.

Definition 5.1.2 (Trajectory Data). A time series is an indexed set T such that

T = {t1, . . . , tn} ⊂ R : ∀ti, tj, i < j ⇐⇒ ti < tj

with the usual order on the indexing set and the real numbers.

Trajectory data, which we denote byX , is the image of a trajectory of some time series. Or,

symbolically

X = {x1 ≜ y(t1), . . . ,xn ≜ y(tn)}

for some trajectory y. Trivially, the indexing on the dataset is monotonic with respect to the

underlying time series.

84

From characterizing an underlying trajectory for motion planning289 to predicting the tra-

jectory at future times54, there are many interesting questions we can ask with trajectory data.

Trajectory data also lends itself to interesting synchronization problems274. We focused on

computing meaningful similarities between trajectories, and using this to cluster trajectory

data.

Cluster

We now briefly review the definition of a cluster.

Definition 5.1.3 (Cluster). A cluster is a partitioning of some data, ideally in a way that

has some meaning or captures some essentially similarities within our data. Formally, given

{xi}ni=1, a clustering is a partition of the index set I ≜ {1, . . . , n}. In particular, we define C

as a set of clusterswhere C = {Cj : Cj ⊆ I}kj=1 with three important properties:

1. Disjoint: the intersection of two clusters is empty

2. Totality: the union of the clusters is the index set

3. Non-empty: no cluster is empty (we may sometimes relax this condition, but we will be

explicit when we do)

Intuitively, the definition of a cluster provides a formal framework over the idea of split-

ting our dataset {xi} into different clusters, where each element of our dataset is in a unique

cluster. Clustering data, however, is neither a general nor a precise process and requires an un-

derstanding of the underlying dataset. There exist a variety of techniques for clustering data,

but there are two broad approaches: We could start with some predefined clusters and some

paragon trajectory data that represents each cluster; this strategy is usually called “supervised”

learning. Alternatively, we could start with some notion of “similarity” and generate clusters

from this function; usually, we say this strategy is “unsupervised” learning.

85

Toolbox

To aid us along our trajectory through trajectory clustering, we will record some other useful

concepts that will be helpful in different contexts.

Definition 5.1.4 (Metric). Ametric spaceM is a set with a function called ametric d such

that to each pair of elements ofM, the metric assigns a non-negative real number. More for-

mally, we write

d :M×M→ R+ ∪ {0}

Moreover, for all elements x, y, z ∈M, the metric must also satisfy

1. Positive Definiteness: d ≥ 0 and d(x, y) = 0 ⇐⇒ x = y

2. Symmetry: d(x, y) = d(y, x)

3. Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z)

Ametric permits us to measure “distance” between elements of a set. More concretely,

when considering the notion of “error” or “clustering,” we need to have a method to pre-

cisely quantify a notion of closeness, which a metric provides. While the class of functions

that are metrics certainly includes the familiar Euclidean distance, there are much more ab-

stract notions of metrics that are important in all areas of the mathematical sciences (and even

beyond).

Using the notion of a metric, we will mostly attempt clustering using various notions of

“similarity” between trajectories. Similarity and distance are closely-related, but distinct con-

cepts: both real-valued, positive-definite numbers, similarity takes higher numbers the “closer”

two objects are. Then, we can attempt to cluster objects based on their similarity with each

other. Though neither a perfect or fully formalized framework, the model of defining similar-

ity and using it to cluster is a powerful and practical technique in trajectory clustering.

Finally, at times we will also use the notion of a “minimum-cost matching” that provides a

mechanism to match elements between two sets, where matching two elements has a certain

86

“cost.” For these purposes, we usually use a metric to define the “distance” or “cost” between

matching two elements, if the two sets we are matching between are both subsets of the same

space.

Definition 5.1.5 (Minimum-Cost Matching). Between two (finite) sets U and V , we define a

matching to mean a setM whereM ⊆ U × V and that for each u ∈ U there exists at most

one elementm ∈ M where the first term ofm is u and that for each v ∈ V there exists at

most one elementm ∈ M where the second term ofm is v. A perfect matching is a matching

where |M | = |U | = |V |.

We can also define a cost function c defined on the elements ofM such that

c :M → R≥0

Wewill also define thematching cost or cost of the matching (and abuse notation) by writing

c(M) ≜
∑
m∈M

c(m)

We letM(U, V) be the set of all matchings for U and V and letMP (U, V) ⊆ M(U, V) be

the set of perfect matchings (which could be empty). IfMP (U, V) is non-empty, then for cost

function c, theminimum cost matching* orMCMc(U, V) is defined to be

MCMc(U, V) ≜ argmin
M∈MP (U,V)

c(M)

5.1.3. Background

Wewill explore an existing technique for comparing trajectories, the Fréchet distance.

*There are diverse ways to define a matching, a cost function, and a minimum cost matching, so we pick a
definition that is convenient to our needs

87

Continuous Fréchet Distance

One intuitive notion of distance between trajectories is the Fréchet Distance.123 The Fréchet

Distance, named after Maurice Fréchet, measures how close two trajectories are with two im-

portant properties:

1. Curves that are “spatially close” are considered close, i.e. a curve that is the result of an

affine shift of another curve will not be considered “close”

2. The “speed” at which we move along a trajectory is unimportant, i.e. the distance be-

tween times in the underlying time series is ignored

More formally, the Fréchet Distance is for curves defined over a metric space, of which trajec-

tories are a special case.

To formally define the Fréchet Distance, we will note that closed intervals of the real num-

bers are homeomorphic to each other. Therefore, the Fréchet Distance will consider all time

series data, as if the time series occurred over the standard unit interval [0, 1].

Then, we inspect, over all reparametrizations of the trajectories, the one that provides the

minimal distance. In that way, we try to consider the “best way” to write the trajectories that is

invariant to how “fast” a particle moves over a trajectory.

Definition 5.1.6 (Curve). For some metric spaceM, we define a curveC such that

C : [0, 1]→M

whereC is continuous.

Moreover, we define a reparametrization ϕ such that

ϕ : [0, 1]→ [0, 1]

such that ϕ is continuous, non-decreasing, and surjective.

88

While a curve and a trajectory are related, we wish to formally distinguish the two concepts

by noting that the definition of a curve is in some sense more general, as it admits a metric,

rather than a trajectory, which relies on the geometry of the real numbers.

Definition 5.1.7 (Fréchet Distance). LetA,B be two curves in some metric spaceM with

distance d. LetΦ be the set of all reparametrizations of the unit interval [0, 1] and ϕ, ρ ∈ Φ.

Let t ∈ [0, 1]. Then, the Fréchet Distance F betweenA andB is

F (A,B) = inf
ϕ,ρ

max
t
{d [A (ϕ(t)) , B (ρ(t))]}

Given some set of curves, we can compute the Fréchet Distance between them in polyno-

mial time.6 Then, this distance can be converted to a measure of similarity or used directly in

the computation of clusters that are based on distance matrices, something we cover later.

Discrete Fréchet Distance

The Discrete Fréchet Distance is based on so-called polygonal curves. Given some trajectory

data, we connect each point with the one immediately following and preceding it with a

straight line. We call such curves “piecewise linear.” Then, we modify the Fréchet Distance

to consider matchings only at vertices84.

Clustering

Though we have covered only metric-based notions of similarity, there are other forms of sim-

ilarity that we can use to perform various clustering techniques. Examples include Spectral

Clustering, Locally Linear Embedding (LLE), and through the use of neural networks. Clus-

tering is a deep and rich topic in mathematics and computer science2. No doubt, any citation

or description of data clustering techniques would be outdated by the time of publication.

89

Computational Geometry

Wewill use convex hulls (the unique minimal convex set that contains a set of points), a Voronoi

diagram (a partition of space into cells given points), and a Delaunay triangulation (a triangu-

lation that is the dual of a Voronoi diagram.) See Definitions 2.2.1, 2.2.6, 2.2.7 for formal

definitions of these concepts. Figure 5.5 has an example of a Delaunay Triangulation.

5.1.4. Basketball Trajectories

One interesting application of trajectory clustering comes to us from basketball.

Remark (Data Set). We are currently working with raw position data of basketball players,

sampled around every 5ms. We are focused on the Duke ’16-’17 basketball season. We also

have events data, which record fouls, scoring attempts, rebounds, etc. We use this data to de-

lineate possessions. We thank STATS and SportVU for providing this dataset under an aca-

demic license.

Each game is split into a series of possessions, which contains ten sets of trajectory data.

Definition 5.1.8 (Basketball Possession, Game). We define a team trajectory to be an indexed

set of five sets of trajectory data. In particular, we define one as the “defense”D and one the

“offense”O and write

D = {D1, . . . , D5}

O = {O1, . . . , O5}

We define a basketball possessionP to be pair of one defense team trajectory and one offense

team trajectory.

P = (D,O)

90

We define a basketball game to be an ordered set B of basketball possessions

B = {P1, . . . ,Pk}

for some k ∈ N.

However, comparing sets of trajectories is difficult, i.e. it is computationally intensive and

can be too sensitive to noise. Therefore, the first step is to somehow reduce the density of

our data. Thus, for each possession, we compute some form of a gridding scheme (discussed

later) and fix the positions of the defense halfway through the possession; we take the position

halfway through because the defense has “settled” by this point. Additionally, we add the four

corners of the half-court and the basket itself. Therefore, we can write a functionG that takes

in a defense team trajectory and returns some gridding.

Next, given a particular gridding for a possession, we can then compute the edge crossing

that each offense trajectory makes. Using this pipeline, we can write down the “crossing map”

χG(D) which takes in trajectory data and returns us a sequence of edge crossings.

Definition 5.1.9 (Crossing). Given a set of pointsX and a set of edgesE ⊆ X ×X , we say

that a trajectory crosses an edge (x1, x2) if the trajectory intersects with the image of the edge

{λx1 + (1 − λ)x2 : λ ∈ [0, 1]}. We further say that a crossing sequence is the sequence

(ordered by time or, in the case that a trajectory crosses two or more edges at the same time,

we break ties arbitrarily but stably) of edges that a trajectory crosses. With trajectory data, the

crossing sequence is that of the trajectory created by linearly connecting the data.

We write

χG(D) : T → C

where T is the space of trajectory data and C is the space of crossing sequences. We can write

XG(D) = χG(D)(T), i.e. the image under χG(D).

In sum, we first begin with some continuous trajectory created by ten players on a basket-

ball court. Using a system of cameras, we sample each trajectory and produce one trajectory

91

data for each trajectory. These trajectory data can be grouped into an offense and defense,

which we denote asD = {D1, . . . , D5} andO = {O1, . . . , O5} respectively.

From some defense data, we define a gridding, namely through some gridding functionG

and we computeG(D). From this particular gridding, we generate a map χG(D) that can take

in trajectory data and transform it into a sequence of crossings: a map that we will use on the

trajectory data of the offense. For example, we can compute χG(D)(O1), which provides the

crossing sequence of the offense. In all, we can create

χG(D)(O) ≜ {χG(D)(O1), . . . , χG(D)(O5)}

whereby, we are taking the defense trajectory data for each possession to generate some sort

of gridding scheme, then using this gridding scheme to create a sparse representation of the

offense by creating a crossing sequence.

Since a possession is defined as a pair of offense and defense team trajectory data, given

someG, we can compute the crossing sequenceC of a possessionP = (D,O) by defining

it to beC ≜ χG(D)(O). We can also define a crossing sequence C to simply be some crossing

sequence for a givenG andD of some trajectory data.

Definition 5.1.10 (Crossing Similarity). Given two crossing sequences C1, C2 ∈ C, we can

define various notions of similarity σ. We can use the Longest Common Subsequence (LCS)

for the foundation of a definition of similarity, such as a Smith-Waterman definition, or some

other sequence matching notion of similarity.17 We define σ such that

σ : C× C→ R+ ∪ {0}

Finally, given this measure of similarity, we can then further define a similarity between

possessions. We need to understand one more concept to do so.

Definition 5.1.11 (Frobenius Norm). Defining a norm over matrices is not as straightfor-

ward as over vectors. In some sense, we want to capture the magnitude of the matrix based on

92

its entries. Therefore, we define the Frobenius Norm of a square matrixA as follows:

∥A∥F =
√

Tr (A⊺A)

whereTr is the trace and ⊺ is the matrix transpose.

Definition 5.1.12 (Possession Similarity). Given two possessionsP1 = (D1,O1),P2 =

(D2,O2) and someG, we define the similarity matrix Σ ∈ R5×5 as follows

(Σij) = σ(χG(D1)(Ui), χG(D2)(Vj))

for all Ui ∈ O1 and Vj ∈ O2.

Then, we define the similarity of two possessions as

S(P1,P2) = ∥Σ∥F

Given this definition of possession similarity, experimental results have so far validated the

use of spectral clustering. In particular, taking the pairwise similarity between all possessions

in a game has been successful and confirmed with video data of basketball games, as seen in

Figure 5.10 below.

Summary of Pipeline

We summarize our resulting pipeline for clustering basketball possessions:

1. Input: basketball trajectory data split by possessions

2. For each possession:

(a) grid the space by using some gridding technique

(b) compute sequence of edge crossings for each offensive player

3. For every pair of possessions

93

(a) compute the similarity score between each pair of offensive players, this becomes a

similarity matrix

(b) compute the Frobenius norm of this matrix, this is the similarity score between

the pair of possessions

4. Cluster on this similarity matrix between possessions

5. Result: Clustered possessions

Gridding Techniques

Overview

One blackbox in the aforementioned algorithm is the use of a “gridding” method. The mo-

tivation of a gridding method is to reduce the density of the dataset; in other words, we can

take some trajectory data that may have hundreds of points and reduce it to some smaller se-

quence.

In other words, by fixing a new coordinate system on the basketball court, it is possible to

transform the trajectory data into a new trajectory data. Instead of tracking the position of

each basketball player at each timestep, though, we instead keep a list of “cells” each player is

in. A grid is simply a collection of these cells that partition the court, i.e. the cells have two

important properties:

1. The cells cover the entire basketball court

2. The cells are disjoint or, in other words, they do not intersect

Therefore, we can keep a track of the sequences of cells that each basketball player enters and

exits. Then, we can compare this sequence of cells for each basketball player across all of the

plays.

Importantly, the gridding for a particular play can be dependent on the position of the bas-

ketball players in the play itself. For the purpose of the gridding, the position of the basketball

94

players in the play is frozen in the middle of the play. Naturally, we must then also consider

how we can compare sequences generated by these gridding techniques, especially when the

gridding may change per play. Thus, several gridding techniques that were considered are pre-

sented in the following section, each with an explanation of how the gridding in one play is

identified with the gridding in another play.

As a note, for the purposes of comparing a grid, we simply need to create a notion of an in-

dicator, namely we only track if two cells are the same across different griddings, rather than

trying to measure the “distance” between two cells. Therefore, we only define a way to iden-

tify if two cells are the “same” or “not the same” across two different griddings.

Several Gridding Techniques

Figure 5.1: A basketball court with with defense in blue and offense in orange. The court picture is
reproduced from http://printablediagram.co.

In the example presented in Figure 5.1, we see a basketball court with some sample player data:

the offensive players marked in orange with the defensive players marked in blue. Given this

data, we could consider several schemes for dividing the court into a grid: some that use the

data or some that do not.

95

http://printablediagram.co

The first, and perhaps most simple gridding method, would be a regular rectilinear grid.

Figure 5.2: A basketball court with a regular rectilinear gridding. This figure is the same as Fig‐
ure 5.1 but has a regular grid on top of it. The defense is in blue and the offense is in orange.

As evinced in Figure 5.2, we see a regular rectilinear gridding where each cell has equal

area is spaced at regular intervals, thus the gridding does not change with each play. More-

over, each cell is easily identifiable by the row and column that it sits in and can be compared

quickly across the plays.

The next type of gridding is the position-based rectilinear gridding.

96

Figure 5.3: A basketball court with a position‐based rectilinear gridding. This figure is the same
as Figure 5.1 but has a position‐based rectilinear grid on top of it. In particular, for each defense
player (in blue), we place a vertical and horizontal line at their position, e.g. for a player at (x0, y0),
we place the lines x = x0, y = y0 on top of the basketball court. We do not do anything for the
offense (in orange).

As picture in Figure 5.3, the position-based rectilinear gridding places a horizontal and

vertical line at each defender position. In this way, each (distinct) defender position creates

four quadrants of the basketball court.

This gridding changes with each play depending on the position of the defense, so we have

to somehow draw a correspondence between griddings for each play. Since the “area” of a line

is 0 using the standard Lebesgue Measure, we note that there is a 0% chance of five points cho-

sen uniformly at random from a rectangle inR2 (i.e. a basketball court) will lie on the same

vertical or horizontal line (i.e. either their x- or y-coordinate will coincide).

Next, we note that, by this result, we expect to have five distinct vertical and horizontal

lines. This selection of vertical and horizontal lines will create six columns and six rows, which

implies a total of thirty-six cells that will be created.

Finally, by taking the (somewhat imprecise) assumption that no two defenders will lie on

the same horizontal or vertical line (an assertion that is borne out experimentally, so we take

for granted theoretically), we know that this gridding technique will always produce thirty-six

97

cells. Thus, we can identify the cells in the same way as a regular rectilinear grid by fixing an

indexing of the cells from left-to-right and then from top-to-bottom (sometimes called “raster

order”).

The next gridding method is a regular polar grid.

Figure 5.4: A basketball court with a regular polar gridding, emanating from the basket that the
offense (orange) is pursuing and the defense (blue) is defending. The polar grid image is from
http://etc.usf.edu.

In Figure 5.4, we have an example of a regular polar grid. In this case, a series of concen-

tric circles are drawn centered around the origin, with each circle increasing in radius by unit

length. The circle is partitioned into arcs of equal length by selecting some roots of unity for a

particular number of roots. In this way, a regular polar grid is created, with each cell represent-

ing a section of an annulus.

Again, since this is a regular gridding, in that it does not rely upon the position of the de-

fenders, it is trivial to identify each cell in the gridding with its corresponding cell in another

gridding.

Finally, we consider theDelaunay Triangulation gridding.

98

http://etc.usf.edu

Figure 5.5: A basketball court with a Delaunay triangulation gridding. We take the Delaynay trian‐
gulation of the players on the defense (in blue), along with points at each corner of the half‐court
and the basket. We do not compute a gridding from the offense (in orange).

The Delaunay Triangulation is a standard method of creating a gridding from a set of

points in the plane. In particular, to create this gridding, we first have to add five points that

represent the outer part of the half-court. Then, we compute the Delaunay Triangulation and

let this define a gridding.

To identify cells within each gridding with each other, we can use the five “fixed” points

as reference. In particular, we label each reference point as {A,B,C,D,E}. Then, using a

minimum-cost matching (with the cost function between points as the standard Euclidean

distance), we identify each defender with a fixed point and give the label {A′, B′, C ′, D′, E ′}.

In other words, we create a matching from the set of fixed points and the set of defenders

(both are just points in a plane) with the cost function as the standard distance function. We

can thus label each cell by its corresponding three points (a Delaunay Triangulation will al-

ways produce cells that are triangles) and equate cells from one gridding to the next by these

labels.

Importantly, we note that in this gridding scheme, the fixed points provide a mechanism

for comparing cells across griddings for each play. Namely, the fixed points provide a frame of

99

reference and allow for a standardized way to label the defenders across plays. This technique

provides a principled way of determining which cells are the “same” across plays (since cells

that are the same are close to the same fixed points), while also providing the flexibility for the

cells to warp with the configuration of each defense.

Convex Hulls

Some prior art by Stephen Shea and Chris Baker suggests the use of convex hulls.257 In par-

ticular, they define the notion of the CHAD and the CHAO, or the Convex Hull Area of the

Defense and the Convex Hull Area of the Offense respectively.

Figure 5.6: A basketball court with the convex hulls of the defense (blue) and offense (orange).

These convex hulls as seen in Figure 5.6 are fairly easy to compute, along with their respec-

tive areas. The CHAD is the area of the convex hull of the defense (as seen in blue) and the

CHAO is the are of the convex hull of the offense (as seen in orange).

In particular, given that each possession is made of trajectory data, Shea et al. pick a sin-

gle moment in a possession defined by the first time that the ball was on the three-point line

above the break. For our purposes, we shift that moment in time to be consistent with the

computation of the triangulation, namely halfway through the possession.

100

Shea et al. suggest that the ratio of the CHAD and the CHAO can be used to predict the

scoring potential for a particular possession. However, these results are preliminary and do

not take into account the dynamics of the game (e.g. they are based off of a single moment in

a possession). Moreover, even if their correlation is statistically significant, the correlation it-

self is weak and does not provide strong quantitative predictive power. Finally, the use of the

CHAD and the CHAOmay be misleading; the intuition is that a spread out defense is a weak

one, but the extreme example of all defenders standing in one corner illustrates a low CHAD

with a terrible defensive strategy. Therefore, we attempt to reproduce the CHAD/CHAO

method with an additional accounting for the dynamics of the game itself. However, we will

still mainly focus on classification.

Experimental Results

Wewill describe some of clusters and the similarities observed while watching videos of posses-

sions clustered together.

101

Figure 5.7: The raw trajectory data of the ten basketball players in a particular play within a partic‐
ular Duke University basketball game.

Raw trajectory data, as seen in Figure 5.7, over a possession tend to look fairly chaotic and

incomprehensible. Even with some way to indicate the differences between players, visual

inspection of the data itself proved to be unfruitful.

However, watching video clips of the respective games has been the most salient way for

identifying a type of play or what makes a cluster similar. Subjective determinations of the

type of quality of the play are easy to make and fairly standardized in the basketball commu-

nity, e.g. there is a refereeing and commentating system.

Observations of Clusters

These clusters are created using spectral clustering and the Delaunay Triangle gridding method.

102

Figure 5.8: A bar graph that displays the size of each of the clusters detected by the spectral clus‐
tering method.

Looking at the clusters we found in Figure 5.8, our pipeline works well for short plays

where there is a clear defining event. For example, we consistently found a cluster of five plays

in which every play was set up as a quick pull up and 3-pointer, these were all executed very

quickly. We were also successful in picking up a cluster of mostly drives—in which the de-

fense was set up and one offensive player drove into the paint to score.

103

Figure 5.9: Dendrogram of the relationship between plays. Play indices are indicated along the
x‐axis, while relative similarity is indicated across the y‐axis. Clustering is based on Delaunay
Triangulation for gridding.

Wewere less successful differentiating long plays, which all tended to be placed in one mis-

cellaneous cluster. Manipulating the sequence similarity measure could change the overall

results. With our setup, any sequence alignment technique could work, which has a rich lit-

erature244. For example, switching from the LCS-based distance17 to Smith-Waterman may

improve cluster quality.

As seen in Figure 5.9, we were able to capture some interesting clusters. Most of the clusters

are around the same size, which we do not necessarily expect to be true all of the time. For ex-

ample, there could be one successful play (such as a player being “hot” from the 3-point line)

that the team runs more frequently, and others which do not get repeated. We suspect that

this uniformity in cluster size might be an artifact of our use of Spectral Clustering, but given

the size of the dataset, it is difficult to distinguish between certain biases by our techniques

and the underlying data itself.

104

In all, this pipeline provided some interesting ways to validate the intuition on the classi-

fication of plays via their inherent geometry. By making dataset more sparse and extractign

salient information, the pipeline gave rise to some useful notions of comparing basketball pos-

sessions across four different games. The clusters pretty quickly break apart, though, which

we thought was expected. Overall our experiments have made us hopeful for the success of

this general pipeline, and they have left us with many questions which we hope to answer in

the future by running even more experiments and changing pieces of the pipeline.

Cluster Validation

Next, we are interested in howmuch clusters change across different experiments, as one form

of validation. We perform a cross-similarity analysis to show how often plays are clustered

together.

105

Figure 5.10: Cross‐similarity matrix showing aggregate similarity across experiments. Play numbers
are reordered to correspond to the order in the dendrogram.

As shown in Figure 5.10, we have some plays which are almost always clustered together,

which we take to be a good sign. We originally thought that we couldn’t use more typical tra-

jectory similarity tools, such as finding the Fréchet distance, because the trajectories tend to

be chaotic, so we hoped converting to sequences would capture some of the relevant posi-

tion and movement data, but also remove some of the inherent noisiness of the trajectories. A

question we have continued to ask ourselves is whether we are looking at this position data at

the right resolution.

Finally, our most intriguing validation comes from subjective and qualitative analysis of the

plays.

106

Figure 5.11: Cross‐similarity matrix with corresponding dendrogram along with a manual labeling
of possession clusters by well‐known play types.

Figure 5.11 provides insight into what these clusters represent. In particular, we can see

a correspondence between the cross-similarity matrix and the dendrogram generated from

this similarity matrix. Moreover, the qualitative assessment provides a classification of the

different play types, like “baseline drives,” “breakaways,” “drive and fouls,” and “3’s” (a play

where the offense focuses outside the three-point line and an offender attempts a three early in

the possession).

Gridding Techniques

Upon analyzing the four different gridding techniques, a slight bias towards the Delaunay

Triangulation gridding was exhibited qualitatively. However, not enough data (with labels)

exists in the dataset (i.e. there are only four games), so it is difficult to present quantitative

conclusions on the differences between the gridding techniques. However, it does seem that

the similarity scores, overall clustering, and classification component is somewhat sensitive to

the underlying gridding technique.

Since small perturbations in the trajectory data can cause dramatic changes in sequence, es-

107

pecially for short sequences, it is possible that more theoretical guarantees need to be enforced

on the way in which crossing sequences are generated. For example, a more formal analysis

could be computed about the size of perturbation for any one point in the trajectory data and

the corresponding change in similarity score of that possession with any other possession.

Convex Hulls

Inspecting the convex hulls provided no additional insight in this context. In particular, the

ratios of the CHAD and CHAO did not give rise to any strong or obvious correlation with

other information about the play. The CHAD/CHAO ratios did not seem to give insight

into each cluster, possibly because each cluster is computed with dynamic data, while the

CHAD/CHAO ratio is a decidedely a static measure.

5.1.5. Future Work

We feel that we have a good framework for analysis of basketball data. The most important

aspect of future work will be the availability and coherency of the dataset, where many of the

techniques presented here could be experimentally validated with more comprehensive inspec-

tion.

Otherwise, many of the improvements in this data-driven report lie with the permutation

of several different techniques that may satisfy various definitions outlined here. For exam-

ple, different notions of metrics, clustering, or gridding could be use and cross-validated to

demonstrate a richer and more fruitful comparison among techniques. Changes in our se-

quence similarity technique could also provide another variable within this pipeline.

Moreover, the possession analysis techniques could be used to develop a more granular

notion of the “play” in basketball, where the trajectory data could be used to find the demar-

cation between them. While we have a subjective analysis of a “play,” a more quantitative ap-

proach to separating plays may provide new insights on their inherent structure.

The CHAD/CHAO ratio could be studied further, like by providing a way of dynami-

108

cally recomputing this ratio in a possession and studying its behavior as an indicator over time.

With a definition of a play, it would be interesting to see the CHAD/CHAO ratio at the level

of a play, rather than a possession. Moreover, this ratio could demonstrate some high-level in-

formation on the geometry of a play that complements the more local geometry given from

the current pipeline.

The incorporation of scoring data would be an exciting innovation, not only to classify

possessions, but also to describe the inherent “success” or “failure” of a possession. In partic-

ular, the scoring data could be used as a quantitative way of adjudicating if a possession was

correctly executed and is consistent with the behavior of possessions that are indeed similar to

it. More tractable visualizations and ways to analyze our results would also be useful in this

context, as basketball is inherently discoverable and comprehensible. We also are interested in

comparing our results to those found under supervised learning, but this will require labeling

of datasets, which would be another leap in the quality of the dataset.

109

5.2. Basketball through Geometry and Machine Learning

This section extends the topological approach in Section 5.1. We present a second perspective

on the same type of data given in Figure 5.7. Instead of using a gridding scheme to extract a

dynamic network, we explicitly take frame-by-frame networks based on passing opportuni-

ties. We then turn to a more sophisticated statistical model (a jumpMarkov model) and lever-

age the newer machinery of a Transformer neural network to study the passing dynamics. In

Section 5.1, our emphasis was on unsupervised play classification; in this section, we provide

experimental validation through a supervised trajectory prediction task.

One of the most salient results from this section is that we can leverage a pre-trained model,

namely the famous Transformer model287. We do not modify its architecture, nor are we

forced to construct our own complicated deep network architecture. Instead, by placing a

couple additional layers around Transformer, we can leverage it directly and immediately,

which aligns with the current pre-train/fine-tune approach to machine learning. More as-

toundingly, we repurpose a model in natural language processing for geometric data, which

is only possible through dynamic networks. By constructing a proper abstraction around our

data, we can harness the power of machine learning without much additional effort.

110

5.2.1. Introduction

Figure 5.12: Overview of the data analysis pipeline presented in this section. First, the raw trajectory data is converted into
interaction networks. Then, by comparing graphs up to isomorphism, we can construct a “library” of possible configurations.
We can then construct a jump Markov model by taking the empirical maximum likelihood estimator with graphs as the state
space. Finally, we can feed in the raw trajectory data and the graph data from the jump Markov model into a Transformer
model for prediction. This article opens the door to future work on inferring game semantics and strategies from actual
games.

Multi-agent systems are fascinating both for their geometric properties and for their complex

interactions. In a variety of contexts, we would like to understand their underlying dynamics,

moving beyond the construction of black-box models that simply replicate their behavior.

Therefore, we strive to formulate a domain-specific, “semantic” understanding of a multi-

agent system that produces geometric data. In addition, we consider related modeling and

prediction problems. One paragon example of a multi-agent geometric system includes fast-

paced “invasion” sports like basketball, soccer, and hockey118.

111

This chapter focuses on basketball for its relevance, availability of data, and the interest-

ing mathematical setting that it provides. In particular, basketball involves few agents, which

makes it more tractable for analysis, but agents are constantly in motion, with sophisticated

interactions, which provides a great variety of events to study.

We study the trajectories of players as they move across the court. To develop a rich under-

standing of the dynamics of basketball players, we develop a model with:

1. Formation discovery: a semantic understanding of the functional roles of players;

2. High compression: an efficient representation of a game, as player trajectory data is

large and difficult to interpret;

3. Predictive power: a mechanism for generating synthetic basketball data and predicting

trajectories of players.

To achieve these goals, we construct dynamic passing networks, from which we produce a

jumpMarkov model that provides formation discovery, high compression and—when cou-

pled with a Transformer model—predictive power. Our model is also simple and admits a rig-

orous theoretical analysis that can provide insight into the underlying dynamics of basketball.

Our pipeline is summarized in Figure 5.12.

By constructing a jumpMarkov model, we convert inherently geometric data into sequences

of symbols, which are ripe for lexical analysis akin to natural language processing. For this

reason, we can use a Transformer to better “parse” the underlying syntactical and semantic

features that exist within a basketball game. Thus our pipeline can perform downstream pre-

dictive tasks, like trajectory prediction, with both geometric data (which has been previously

addressed with varying success) and semantic data.

In summary, the synthesis of semantic and geometric data is the main contribution of the

work in this section. We propose a novel pipeline to convert geometric data from a complex,

interactive multi-agent system into semantic sequences. These two perspectives on the data

provide better insight into the underlying dynamics, as well as stronger results in important

applications like trajectory prediction.

112

5.2.2. Related Work

The analysis of basketball player trajectory began shortly after cutting-edge technology was

developed that allowed for comprehensive player tracking 179. Early models did reasonably

well in role discovery and compression, but, over the past decade, predictive power has greatly

increased—especially for the most common prediction task, trajectory prediction.

Trajectory Prediction

Trajectory prediction focuses on forecasting the movement of players given their history.

Generically, trajectory prediction is a much broader discipline that has historic roots, but we

restrict ourselves to those that concretely involve sports245,199.

One state-of-the-art paper305 considers a combination of graph neural networks and re-

current neural networks to predictK additional frames of a trajectory, givenL initial frames.

Interestingly, the generative nature of the model also allows for the testing of counterfactual

claims, e.g. predicting player movement given alternative hypothetical histories. This work,

however, does not consider the adversarial dynamics, in that the model does not incorporate

data from the other team for a given player.

More recently, the Generative Attentional Multi-Agent Network (GAMAN) model, pro-

posed in167, and Dynamic Neural Relational Inference (dNRI), proposed in109, seem to at-

tain the state-of-the-art results in predicting trajectory data (though the latter has yet to release

full results of the model). Previous work includes a variety of other techniques in deep learn-

ing, but have been largely superseded by the aforementioned models. Newer models tend to

incorporate both more modern structural elements, e.g. attention, but also have better train-

ing mechanisms that render previous work obsolete.

However, whether or not explicit formation or role discovery is important to trajectory pre-

diction is not well-established. Trajectory prediction models must avoid sensitivity to specific

player identities, as each player can perform several different functions in a game that will af-

fect their movement patterns. Role discovery can aid in this process by assigning players to

113

specific roles, which may improve trajectory prediction. Certain recent models avoid explicit

role discovery, however, and still seem to attain competitive results in trajectory prediction.

Role Discovery

Discovering the actual function that a player is performing can be per se useful. The naive

approach of tracking players by their personal identity across plays, games, seasons, and teams

may yield a more confused analysis. Therefore, one common approach to analyzing sports

data, especially with trajectories, is to develop some kind of “role” categorization, e.g. a point

guard. Of course, most sports and indeed basketball come with preconceived notions of what

a “role” is, but a first-principles approach to role discovery has yielded interesting results.

Work first done in179, extended in307, patented in26, and updated in128 proposes an exten-

sive set of efficient methods to classify roles, especially within field hockey. This work relies

on the creation of permutation matrices that induce a bijection between players and roles.

Through deep learning, the specific permutation matrices are learned given previous trajec-

tory information. The most recent model leverages deep learning to produce “formation tem-

plates” that provide standard arrangements of players, along with an assignment of functional

roles. In general, these role-based models support “permutation-equivariance” which are less

sensitive to the specific identities of players *.

Role discovery is an important strand of research, as it emphasizes semantics of the game.

While trajectory prediction is a compelling problem in its own right, role discovery highlights

the underlying structure of a particular game. Through role discovery, we can provide inter-

pretable labels or classifications to particular player formations and movements.

Role discovery has also garnered popular attention15,23,52,185,320, with a variety of approaches

in constructing and classifying roles.

*This research, as applied to sports, relies heavily on data from STATS, which is a company that has technol-
ogy to collect and analyze player position data.

114

Network Analysis

Network analysis for sports data is comparatively old, with some early efforts in soccer begin-

ning in 1979107. The most relevant type of network analysis, however, has been on passing

networks and investigates the frequency with which players pass the ball221,106. This research

direction emphasizes the study of aggregate network properties, e.g. the centrality of a player

on a particular team118. Network analysis thus far has considered the network of passing fre-

quency over an entire game rather than the specific dynamics during the game itself.

5.2.3. Semantic Geometric Pipeline

Geometric Data

Our principal dataset contains the position of the offense, the defense, and the ball—expressed

as (x, y)-coordinates—across an entire game capture at 25 frames per second (i.e. 40ms be-

tween frames). Notably, basketball is divided into possessions, where the teams alternate

between the defensive and offensive roles. Consider five indexed points as the offenseO =

{o1, o2, o3, o4, o5} ⊂ R2 : |O| = 5 and five indexed points as the defenseD = {d1, d2, d3, d4, d5} ⊂

R2 : |D| = 5. One frame F of data is the ordered pair (O,D). Each possession P is a se-

quence of frames of data and a game is a sequence of possessions Pl.

Dynamic Passing Networks

From this dataset, we construct dynamic passing networks. These networks are defined over

the offense (i.e. for basketball, there are five nodes); two players on the same team have an edge

joining them if there is no defense player in-between. Figure 5.13 provides some intuition for

this construction.

More precisely, given two sets of five members of the offenseO ⊂ R2 and five members of

the defenseD ⊂ R2, we can define a graphG over verticesO. For oi, oj ∈ O, edge (oi, oj)

is in the graph if there is no d ∈ D such that the line of sight l(oi, oj) intersects with occlusion

115

field Fr(d). The line of sight between two points x, y is defined as

l(x, y) ≜
{
z ∈ R2 | z = x+ (1− λ)v, v = y − x, λ ∈ [0, 1]

}
and an occlusion field on point p and radius r = 3 as

Fr(p) =
{
x ∈ R2 | ∥x− p∥2 ≤ r

}

Figure 5.13: A deeper look at a snapshot of a basketball game. Green nodes with Roman characters are offensive players.
Red nodes with Greek letters are defensive players. On the left, we see player positions with occlusion fields. In the center,
we see all offensive lines of sight. On the right, we see the occlusion network with only the offensive edges.

For each frame, we construct these networks by starting with a complete graph with the of-

fense players as the nodes; we then remove edges from this graph if a defensive player occludes

the straight line of sight between a pair of offense players. Figure 5.14 depicts a passing net-

work for one frame.

116

Figure 5.14: A frame of the basketball game with the constructed passing network. Green circles with Latin letters are the
offense, while red circles with Greek letters are the defense.

Thus, we can convert each frame of the basketball game from two sets of (x, y)-coordinates

to a graph. We further compress this representation by only considering graphs up to isomor-

phism, which allows us to store a label to a representative graph per frame. This procedure

thus converts a sequence of frames of position data into a sequence of labels.

Notably, this representation sheds the direct geometry of the basketball game. However,

this sequence of labels provides a purely semantic and highly compressible representation of

the game and is justified by three physical assumptions, which are validated by our results:

1. From one frame to the next, there can be at most one edge that changes and this edge

change can only occur as a result of well-behaved player trajectories;

2. While it is possible that two very different geometries produce the same graph, a se-

quence of graphs must come from a real play, and thus provide enough information on

the possession;

3. Basketball is “fast-paced” enough that it follows a Markovian property. Mainly, players

do not have time to consider the history of the game to factor into a future strategy, and

117

instead either follow a set strategy or respond nearly instantaneously to their current

environment.

Jump Markov Model

We can construct the maximum likelihood estimator of a jumpMarkov model that character-

izes this sequence of labels. AMarkov model assumes that a sequence of labels exhibits the

Markovian property, namely that the label of one entry in the sequence is only influenced by

the previous entry, and no others. Such a sequence can be characterized by “transition” prob-

abilities: for every possible pair of labels (x, y), the frequency with which y appears right after

x in our sequences.

A twist on such a model is a “jump”Markov model that additionally assigns a hold time to

each state: namely, since a basketball game is a continuous-time process, we can also capture

the average length of time that our sequence of frames does not change.

More precisely, given an indexed state space S = {s1, . . . , sn} of some symbols and an

(n × n)-stochastic matrix P , we say that state si transitions to state sj with probability Pi,j .

This state space and transition matrix define a (time-homogeneous, discrete, finite) Markov

chain, which is a stochastic process that we write asEk with k ∈ N.

Next, consider a Poisson process, which is a continuous-time stochastic process with rate

λ and associated counting process {N(t)}. A Poisson process is a stochastic process that

“counts” the number of exponentially distributed events. More formally, given an i.i.d. se-

quence τk of exponential random variables with parameter λ > 0, we can construct the se-

quence Tk+1 = Tk + τk with T0 = 0. In short, these Tk variables give us the “time” that the k-

th event has occurred. The counting process {N(t)} is defined asN(t) = max {k : Tk ≤ t}

Overlapping the discrete-timeMarkov chain on the continuous-time Poisson process (where

the “events” that occur are transitions of the Markov chain) yields a jumpMarkov model, de-

fined as the continuous-time stochastic processX(t) such that

X(t) = EN(t)

118

which is our stochastic process of interest250.

We use our passing networks up to isomorphism to define the state space of the Markov

chain. From here, we can construct the maximum likelihood estimator of the jumpMarkov

model that captures the behavior of the changes in state. Each state s in the state space can

also be associated with a jump time λs that defines the average time in each state.

A Transformer

Finally, to validate the empirically constructed jumpMarkov model, we can use a Transformer.

Transformer is a state-of-the-art deep neural network that excels at two tasks: sequence com-

pletion and sequence translation. Transformer is generally a staple of natural language process-

ing, but can work in a variety of different sequence-related tasks287, as detailed in Figure 5.15.

For our experiments, we retained all of the standard architectural elements of the out-of-the-

box Transformer, only making a mild alterations as necessary (described in the following sec-

tions). For our experiments, we divided the frames into short sequences of length 50; with a

standard 80-10-10 allocation, these sequences were then split into a training, validation, and

test set respectively.

Baseline: Sequence Completion

To establish a baseline, we first used Transformer for sequence completion: given 40 frames of

positional data, we used Transformer to predict 10 frames of positional data. For this task, we

removed the standard lookup embedding layer for transformer, and instead directly concate-

nated all player positions to construct a vector inR10×2 = R20 (10 players, each with an x and

y coordinate).

Then, we used only the Decoder part (i.e. right half) of Transformer to complete the se-

quence. Though a naive baseline, this setup provides insight into the raw performance of se-

quence completion using just the positional data. It provides insight into how well we can

predict the rest of a sequence from just the positional data, without any data manipulation or

enhanced insights.

119

Comparison: Sequence Translation

For our second task, we leveraged Transformer to “translate” between the sequences pro-

duced in the state space of the Markov model to positional data. In other words, we used

the full Transformer system to convert graphs into position data. Notably, the output of

this sequence translation experiment is the same as the previous sequence completion exper-

iment. Therefore, we can directly compare the performance of the two experiments to mea-

sure how accurately we can predict 10 frames of positional data from 40 frames of given data.

In the previous completion experiment, the 40 given frames were also positional data; in the

sequence translation experiment, the 40 given frames are positional data, as well as graph data.

This setup corresponds directly to Figure 5.12. For inference, we:

1. Convert raw frames of trajectory data into frames of passing networks

2. Convert passing networks into a token, by assigning a label to each equivalence class of

graphs

3. Use the jumpMarkov model to predict the next token in a sequence

4. Feed the predicted tokens into a Transformer to predict frames of position data.

However, for training, we directly allowed Transformer to predict a frame of position data

from a token, which helps isolate the problem of translating tokens to positional data. Ad-

ditionally, we computed the transition matrix and hold times of the jumpMarkov model

during training. During inference (i.e. testing and validation), we use the predictions made

from the jumpMarkov model and then fed these predicted tokens into Transformer. This sec-

ond translation experiment thus highlights the importance of the jumpMarkov model in our

setup.

Each frame of the positional basketball data was therefore converted into a graph. Then, all

graphs were compared with each other up to graph isomorphism and a representative graph

was chosen for each equivalence class of graphs. Each representative was given an arbitrary

120

label (token). Thus, each frame of position data was converted into a token. These token se-

quences, along with the associated position data were treated as the “input” sequence to the

Transformer and the positions as “output” data.

Since the input sequences were already tokens, we could use a standard learned embedding.

The output data, as raw geometric data, were treated slightly differently. To match the input

and output embedding dimension, we used a fully dense linear layer to further embed the

output sequence into the appropriate model dimension and then a used another fully dense

linear layer to convert the result of the decoders back into vectors inR20, in lieu of a softmax

layer. More precisely, our data is expressed as a sequence of vectors inR20, but the model op-

erates over vectors inRdmodel where dmodel is some learned hyperparameter and will not in

general be 20. Therefore, we used two dense linear layers at each end of the model to solve this

problem: L1 : R20 → Rdmodel and L2 : Rdmodel → R20.

121

Figure 5.15: The architecture diagram of a Transformer, as presented in287. The Transformer has an encoder system (left)
and a decoder system (right) and uses self‐attention in three ways to accurately capture semantic information from both
sequences.

122

5.2.4. Results

Figure 5.16: Sample library of graphs for a possession, descending in order of frequency from left to right and top to bot‐
tom.

Markovian Property

First, we consider the sequence of graphs that we construct from the geometric data. Under-

standing the dynamics of these graphs provides insight into the overall dynamics of the game.

It is paramount to find a model that captures these dynamics. Fortunately, our data seems to

express a Markovian property and we can therefore use a Markov model to capture the essen-

tial elements of our graph sequences. In this section, we provide empirical validation for this

claim.

To begin, we note our assumption that dynamic passing networks can only change by one

edge at a time. From a theoretical perspective, we study the case of a disc of radius r that is

full intersected by some line segment segment, as in Figure 5.17). If the ball is constrained to

123

move some arbitrarily small distance ϵ, that this ball will continue to be fully intersected by

the line segment. This analogy extends to our basketball sequences: r is the radius of occlu-

sion for some defensive player; ϵ is the maximum distance a member of the defense can move

within one frame of data. Given that there is some universal constant v that defines the max-

imum speed a human can move, then we can arbitrarily increase our sampling rate to yield

some maximum ϵ distance. In our context, if we sample the basketball player positions often

enough, we have some intuition as to why it is unlikely for more than one edge to change at

a time. Moreover, we could enact some tie-breaking scheme to enforce that one edge changes

at a time. Empirically, 99.3% of changes in number of edges are within one edge, which we

could bring to 100% if we could sample more frequently. In fact, given that 99.3% is quite

close to saturation, we can conclude that our sampling frequency is nearly correct: neither too

often nor too sparse.

Figure 5.17: Two players on the offense (black points on either side of the line segment) with a member of the defense in
between them (large orange ball in the center).

This assumption, that only one edge changes at one time, is convenient, as it allows us to

study the change in number of edges of the graphs, which is much simpler to analyze. In other

words, we can convert a sequence of graphs into a sequence of number of edges and learn

much about our system without having to rely on a full classification of the graphs. It is possi-

ble to define a variety of partial and total ordering schemes on graphs and without a “natural”

method of comparing one graph to the next, we would require some additional assumptions

or constructions. Instead, we look at the number of edges, which is simply an integer, giving

us a natural order. We can also state a fundamental assumption: if the number of edges does

124

not change in a graph sequence, then the graph (up to isomorphism) also does not change;

this fact follows directly from our assumption that only edge can change at a time. For exam-

ple, in Figure 5.18, we can see the number of edges in the passing network sequence over time

(i.e. per frame).

Figure 5.18: The number of edges for a particular possession in the game. Mathematically, the number of edges are a
random walk over the frames of data within a possession.

If we treat the number of edges as a Markov chain, we can verify the Markovian property

of our edge count data by checking how a change in edges predicts the next change. Table 5.1

gives, for an entire game, this edge change probability. This data for the game accurately re-

flects the distribution for each possession, as well, which obviates some concerns about vari-

ability within possessions.

The data in Table 5.1 thus shows us that the previous change in edges does not influence

a future change in edges, in that edge change increments are in fact independent. This data

therefore verifies that the number of edges over the course of a possession is in fact Markovian,

which is a surprising, but very useful property.

125

- 0 +
- 0.07 0.87 0.06
0 0.05 0.89 0.05
+ 0.07 0.85 0.08

Table 5.1: Probability table for changes in number of edges. The first row indicates that if the previous change was a de‐
crease in number of edges, then there was a 7%, 87%, and 6% chance respectively that the next change in number of edges
was a decrease, no change, or increase. The second row follows the same pattern given the previous change was no change
in the number of edges. The third row is the same for an increase in number of edges.

Moreover, this suggests that the graph sequence itself is Markovian because of our under-

lying assumption that one edge change at a time can occur. Therefore, we can use a Markov

model to approximate the sequence of graphs over the course of a possession. Finding the

maximum likelihood estimator of a Markov chain is also quite simple, as it is the empirically

found transition probabilities.

Jump Markov Model

While interpreting the sequences of graphs as a Markov chain is a big step towards understand-

ing the underlying dynamics, we have some minor adjustments we can make to further refine

this model. In particular, we observe from Table 5.1 that the overwhelming behavior is for the

number of edges in the graph sequences to not change. Because of our assumption that only

one edge change can occur at a time, this suggests that the overwhelming behavior is for the

graphs to not change.

126

Figure 5.19: Probability transition matrix for a sample possession. This transition matrix assumes a naive Markov chain and
therefore has most of the density for each row on the diagonal.

If we label the graph sequences up to isomorphism and construct the transition probabilty

matrix, we see that the majority of the density is placed on the diagonal, which indicates a

self-transition. Figure 5.19 provides a representative transition matrix for a possession. This

behavior warrants some additional investigation.

To wit, a basketball game is obviously continuous, but our Markov chain with a transi-

tion matrix is discrete. For this reason, we lift the Markov model into a jumpMarkov model,

which allows for different “hold times” per state, i.e. the distribution of time spent in a partic-

ular state before a transition occurs. In the naive Markov chain, these hold times are modeled

as self-transitions, whereas in a jumpMarkov model, these are modeled as occurring along

some exponential distribution.

127

Figure 5.20: Sample hold time distribution as a cumulative density function of a representative graph in a representative
possession. The blue dots are the true data, which have an average of 5, giving an exponential distribution with parameter
1
5 The orange dots represent an ideal exponential distribution with the same parameter.

Figure 5.20 provides a sample hold time distribution for a representative graph in a repre-

sentative possession. In this case, we see the various hold times for the particular labeled graph,

and for reference, an ideal exponential distribution. Therefore, we can see that a jumpMarkov

model with explicit hold times per graph provides a more robust perspective on state changes.

By using a jumpMarkov model, we can actually see stable configurations of players through-

out the game. The probability transition matrix for the model suggests the “semantics” of the

dynamics, insofar as we can track likely changes in configurations for the players. The hold

times demonstrate the overall “stability” of a configuration, i.e. howmuch time is spent in a

particular conformation.

We also can generate a “library” of graphs that provide insight into which configurations

appear most often and what typical sequences of graphs look like. Figure 5.16 is such a rep-

resentative library of graphs presented in descending order by frequency of occurrence in a

possession.

128

Translating with Transformer

Our final set of experiments comes from using a Transformer model. We attempt a standard

task in invasion sports, namely predicting the trajectory of player positions across the court.

We use a 40-10 split, predicting 10 frames of data from 40 given frames.

The first model is a naive setup where we attempt to predict trajectory data from the geo-

metric data present in a frame alone. Using the Transformer encoder, the position data is fed

as a sequence to just the encoder system (6 encoder layers) and a final linear layer to convert

the Transformer memory into a concatenated vector of position data.

The second model is the full Transformer setup as described in Section 5.2.3 where the

encoder accepts a full sequence of geometric data and the decoder operates on the geometric

data as described.

Holding all factors constant, such as learning rate (0.0001), optimization algorithm (Adam),

batch size (64), embedding dimension (200), number of layers (6), number of attention heads

(8), and all other hyperparameters, we can see the effects of translating from the sequence of

graphs through ablation.

The validation loss is set as the summean-square error of the 10 frames to be predicted.

Namely, when predicting frames x41, . . . , x50 with model output x̂41, . . . , x̂50, the validation

error is
1

10

50∑
i=41

(xi − x̂i)2

Importantly, this experimental setup provides us with direct insight into how useful and

fruitful the jumpMarkov model is. By using a naive baseline with Transformer, we essentially

are performing an ablation analysis, where we see the effect of our entire graph extraction

setup. In this context, the MSE score (i.e. the validation error defined above) provides us with

a useful quantitative result on the utility of our entire pipeline.

Over the course of several training runs that were run to convergence, the naive model

achieves anMSE score of approximately 280, while the translation model achieves a best

MSE score of 94 (lower MSE is better). This dramatic decrease in MSE through translation

129

represents the effect of including the graph data, instead of attempting to learn position data

directly.

5.2.5. Conclusion

This work presents a semantic analysis of geometric data from sports. By converting geomet-

ric position data to graph data, we can leverage the gleaned structure to improve the overall ac-

curacy of downstream applications, like trajectory prediction. Additionally, the construction

of a jumpMarkov model provides clarity into the overall structure of a game through two im-

portant properties: first, a transition matrix that indicates which configuration of players lead

to others and second, hold times, which suggest the stability of particular configurations in

context. By constructing this jumpMarkov model, we can develop insights into our data that

goes beyond the geometry.

From our experiments, we can conclude that our pipeline, in incorporating the graph data,

does provide practical insight. Through the completion-vs-translation setup, we can quantify

exactly howmuch information is extracted out of this setup; the compelling drop inMSE gar-

nered by the use of graph data underscores the importance of extracting and using the graph

data.

Future work could use this structure to refine trajectory prediction, performmore sophisti-

cated “play” (strategy) discovery, predict in-game dynamics with speculative pairings of differ-

ent players, and much more. Plus, the jumpMarkov model could be used to create synthetic

datasets to either augment data for existing applications or to inspect the dynamics of hypo-

thetical situations.

In all, this work presents a model that discovers formations through the graph states of

the jumpMarkov model; that is highly compressible by requiring only a transition matrix for

states and a list of hold times; and has predictive power when used in a downstream applica-

tion. From geometry to semantics, we highlight the spectrum of perspectives through which

we can view our data.

130

5.3. Lessons on Dynamism

There are four important lessons to be learned from this chapter. First and foremost, we can

see how powerful topological abstractions can be. Shedding away unnecessary geometric

structure provides a comprehensible and learnable set of features of our application domain.

We have philosophically extended Euler’s ideas in this way.

Second, we have demonstrated the computational underpinnings of even dense data with

high-fidelity sampling. Our data is produced at 24 frames per second, which results in volu-

minous information, since our system is fast-moving. However, we are still able to compute a

theoretically grounded set of features that assist in practical performance.

Third, just as with any data-heavy area, we provide multiple featurizations of the same data.

Dynamic networks are not a trivial nor obvious construction and there may not be a unique

and dominant way to extract dynamic networks from the same dataset. Instead, we provide

two primary different ways of extracting network information, each with further options and

variations. In this way, we demonstrate the capacity for dynamic networks to arise within a

variety of contexts, even in the same setting.

Finally, we studied the power of contemporary data analysis tools. While graph theory is a

historic discipline, it is still highly relevant today and will likely continue to be relevant for the

foreseeable future. We can use both topological data analysis and machine learning to study

our systems and by using dynamic networks, we improve on existing standard techniques to

study this data. In all, our abstraction of dynamic networks prove to be cutting edge tools that

can contend well with other methods from the age of Big Data.

131

Modern science says: The sun is the past, the earth is the

present, the moon is the future. From an incandescent

mass we have originated, and into a frozen mass we shall

turn. Merciless is the law of nature, and rapidly and

irresistibly we are drawn to our doom.

Nikola Tesla

6
Final Frontier: Inspired by Space

S
pace has captivated humans and animals alike for our entire living memory. While

we have not yet conquered this marvelous, awesome void, we have made tremendous

progress in its exploration within the 20th and 21st centuries. We have much further to go, but

one of the greatest innovations of the modern era has been to extend the boundaries of usable

places well past the atmosphere and into the cosmos. While there have been several tangible

milestones in the development of space technology, progress is generally slow and iterative.

Fittingly, this chapter covers a set of studies conducted in collaboration with theNational

Aeronautics and Space Administration (NASA).

One particular area of study is our ability to communicate through space, whether it be to

the International Space Station or to our probes flying beyond the Solar System. Fundamen-

132

tally, this setting contains an important dynamic network: the communication network as we

and many space objects hurtle throughout the galaxy. This chapter covers contributions to

space networking, with our dynamic networks providing a framework to studying the prob-

lem of communication in this precarious environment. We will first study the structure and

nature of these space networks by analyzing lunar networks, after which we focus on routing

problems in more general settings. More precisely, the first section provides a comprehensive

theoretical framework for studying dynamic networks, especially in the space-networking con-

text. The second section applies these contributions and provides examples, data, and other

empirical results on their utility.

Taken in concert, this chapter strives to provide a thorough and detailed exploration of

dynamic networks in the space networking context. By leveraging the theory and praxis of a

wide range of mathematical and computational tools, we can better understand long-range

communication and design the next generation of space networks.

133

6.1. Temporal Graphs in Lunar Networks

In this section, we unpack the theory of dynamic networks. In particular, we construct a few

useful definitions and provide some foundational theoretical results (along with proofs) of

how these objects operate. We then provide an extension of these definitions through a tech-

nique called summary graphs, which also provides its own theoretical results. Finally, we look

at commentary on how this work connects with other important areas of mathematics in this

research application area.

6.1.1. Temporal Graph Theory

As we have seen, graphs are one of the fundamental mathematical structures used to study

computer networks. As always, we continue to build upon a simple, finite graph; in this sec-

tion, we distinguish between undirected and directed graphs and we call the former a “graph”

and the latter a “digraph.” Mathematically, an undirected graph identifies (i, j) ≡ (j, i) for

all (i, j) ∈ E, whereas a directed graph does not. This abstract structure allows us to model

relationships between objects, such as connectivity. In the setting of computer networks, an

edge might be a link between two devices.

In this setting, it is natural to study the importance of a device to the network overall. An

example of something that measures this importance is centralitywhich ranks nodes based on

their importance to connecting the graph. It is also natural to study how one optimizes in a

network from an individual, greedy perspective versus from the perspective of the network

overall.

Graphs can also be “decorated” by coloring their vertices, adding directions to the edges,

or weights indicating the capacity or cost of a connection, for example. Once graphs are dec-

orated, algorithms and analysis can be applied to solve several problems, such as single source

shortest path, max flow, or minimum spanning tree, to name a few. There are several well-

134

established tools for solving these problems*.

One of the implicit assumptions in the construction of many terrestrial networks is that

there exists a “backbone” of the system that will largely go unchanged as time passes. Another

assumption is that communications can be passed near instantaneously. The way graphs are

used to model these networks for engineering purposes often rely on these assumptions.

Both of these assumptions quickly fall apart in the context of space networks as the assets

are subject to orbital mechanics and may lose line of sight or have a nontrivial one-way light

time. Thus, when designing a networking system in this setting, one needs to consider more

general tools. However, many of the most powerful theorems and algorithms that are use-

ful for networking problems such as max-flowmin-cut or Dijkstra’s algorithm are built to

work with a specific collection of common graph decorations such as directed edges and edge

weights. This begs the question: how can one bridge the gap between our system assumptions

and the tools which have been successful in past network engineering?

One approach taken by the developers of Contact Graph Routing (CGR) is to construct

a graph that represents aspects of our time-evolving network in a way that fits the assump-

tions of a desired mathematical tool (in this case Dijkstra’s algorithm). This approach can be

fruitful but also limited as these representations are not the most natural way to think about

time-varying systems. Thus, robust analysis of these networks is limited†. In light of this, we

consider a different collection of graph decorations which more naturally model the time-

varying nature of our system.

The first tool we consider is a time-varying digraph. These structures are equivalent to dy-

namic graphs, but we use an alternative definition to Definition 2.1.10 for practical reasons

and to simplify the notation within this chapter.

Definition 6.1.1 (Time-varying Digraph). We define a time-varying digraph as a tripleG =

(V,E, T), where V is a finite vertex set,E ⊆ V × V is a set of directed edges, and T = {Te :

e ∈ E}, where each Te comes from some timing set. In particular, Te expresses the availabil-

*The reader may review19 for some background in these algorithms.
†The reader may refer to a mathematical analysis of CGR94.

135

ity of an edge, namely e is available for all times represented by Te. Note that we allow loops,

that is, edges that connect a vertex to itself.

Definition 6.1.2 (Continuous Time-varying Digraph). A time-varying digraph where Te is a

set of intervals.

Definition 6.1.3 (Discrete Time-varying Digraph). A time-varying digraph where Te ⊆ N.

Discrete time-varying digraphs, sometimes referred to as time-evolving or temporal di-

graphs, have been a fruitful subject of study in computer science literature194 192 42. However,

we found scant literature concerning continuous time-varying digraphs as a subject of study.

Discrete time‐varying digraphs

Discrete time-varying digraphs have a discrete set decorating each edge which indicates at

which times that edge is available. We first consider a way of describing how a time-varying

digraph changes over its discrete time steps.

Definition 6.1.4. LetG = (V,E, T) be a discrete time-varying digraph with times given by

Te for each edge e. LetΛ =
∪
e∈E Te be ordered so thatΛ = {λ1, . . . , λn}where for each i,

λi−1 < λi. Define the static expansion to be the graphH with vertex set VH and edge setEH

such that:

• If u ∈ V , then ui ∈ VH for each i ∈ Λ ∪ {λ1 − 1}.

• If e = (u, v) ∈ E and λi ∈ Te, then (uλi−1
, vλi) ∈ EH .

An advantage of this representation is that it allows us to think of the vertices of this ex-

panded digraph as images of our original vertices in time194.

Dynamic Connectivity

Another way to expand a time-varying digraph into a larger structure is to construct a se-

quence of graphs. The idea is to represent how the network appears at any interval through

discrete steps.

136

Definition 6.1.5. LetG = (V,E, T) be a discrete time-varying digraph with times given by

Te for each edge e. LetΛ =
∪
e∈E Te be ordered so thatΛ = {λ1, . . . , λn} and λi−1 < λi.

Define the digraph sequence to be the sequence of graphs G = {Gλ}λ∈Λ = {(V,Eλ)}λ∈Λ

where the edge sets are given byEλ = {e ∈ E | λ ∈ Te}.

Note that each digraph in the sequence has the same (identifiable) vertices, but the topol-

ogy of the digraph is changing. We could decorate each digraph with edge weights, node col-

orings, etc. However, we do not allow for a change in the number or identity of vertices. The

length of this sequence could be finite or infinite depending on the context.

We now will extend the notion of a path, as seen in Definition 2.1.4 For a sequence of di-

graphs, we can define an s-journey Js.

Definition 6.1.6 (s-Journey). An s-journey is a sequence of vertices, i.e. Js = (vi0 , vi1 , . . . , vik),

such that for 1 ≤ j ≤ k, (vij−1
, vij) ∈ Es+j−1.

With a notion of a journey, we will now define analogs to shortest path length and the

graph diameter, as seen in Definitions 2.1.5, 2.1.7. From here, we can define s-diameter, which

defines a diameter given a particular timestep s.

Definition 6.1.7 (s-diameter). Given a digraph sequence G, letJ s be the set of all finite s-

journeys andJ s(i, j) be the set of all finite s-journeys where the first vertex is vi and the last

vertex is vj . We define the shortest journey length SJs(i, j) as

SJs(i, j) = min
Js∈J s(i,j)

length(Js)

Therefore, we can now define the s-diameter of G as

diameters(G) = max
i,j∈|V |

SJs(i, j)

Notably, SJs(i, j) can be∞, so the s-diameter can be, too.

We can thus define the following notions of connectivity. A graph is (strongly) connected if it

137

has finite diameter. In graph theory for directed graphs, it is common to use strongly connected

if the graph has finite diameter, but we will simply say connected.

A digraph sequence is:

• δ-disconnected if the s-diameter is∞ for all s;

• δ-weakly connected if the s-diameter is finite for some s;

• δ-connected if the s-diameter is finite for all s;

• and δ-uniformly connected if there exists a finiteC such that the s-diameter is at mostC

for all s.

Furthermore, we say a digraph is non-stranding if each vertex has at least one outbound

edge. We say a digraph is holding if each vertex has a loop. We say a digraph sequence is non-

stranding if all digraphs in the sequence are non-stranding. And we say a digraph sequence is

holding if all digraphs in the sequence are holding. Finally, we say a digraph sequence is fixed if

all digraphs in the sequence are the same, i.e. G = {Gk} andGk = G for all k. We say thatG

is the base graph of a fixed sequence.

First, note that we have harmonized the static and dynamic graph properties.

Proposition 2 (Harmonization of Fixed Sequences). A fixed digraph sequence G is connected

if and only if the base graphG is connected. Moreover, such a connected graph sequence is δ-

uniformly connected, and its uniform bound is the diameter d of the base graph. This bound

is in fact tight, i.e. the s-diameter is d for all s.

Proof. The main idea is that for a fixed digraph sequence, journeys on the dynamic graph

coincide with paths in the base graph, which implies all of our results. To see this, we ob-

serve that, for all s, s-journeys in the digraph sequence are paths on the base graph with edge

setE. If a sequence of vertices (v0, . . . , vk) is an s0-journey for arbitrary timestep s0, then

(vij−1
, vij) ∈ Es0+j−1 for all j ∈ {1, . . . , k} by definition of an s-journey. However, since

this is a fixed digraph sequence, we can rewrite this as (vij−1
, vij) ∈ E. This is exactly the

138

definition of a path on base graphG. Symmetrically, note that every path onG is a valid s-

journey for every timestep s. Because journeys in G exist for all s if and only if the same path

exists inG, then G is connected if and only ifG is connected.

Finally, inspect the s-diameter. Suppose there is a timestep s0 such that the s0-diameter is

strictly less than d, the diameter ofG. Then, there exists an s0-journey of length less than d

between each pair of vertices. But, since each s0-journey is a path, then there must exist a path

between each pair of vertices of length less than d, which would imply that the diameter ofG

is less than d, which is a contradiction. In the other direction, note that if the diameter ofG is

d, then there exists a path of length at most d between each pair of vertices. Since every path is

an s-journey for every timestep s, then there exists an s-journey of length at most d from each

pair of vertices for every s. Therefore, there is a uniform bound d on the s-diameter.

Next, we note that holding is an important property that links static and dynamic notions

of connectivity.

Proposition 3 (Uniform Connectivity of Connected Holding Sequences). A holding digraph

sequence G where each digraph in the sequence is connected is δ-uniformly connected. In

particular, the number of vertices n is a uniform bound and is generically tight.

Proof. Fix a digraph sequence G. We select an arbitrary starting time t0 and source vertex vs.

We will show that there exists an t0-journey between vs and every other vertex in our finite

vertex set V and each journey has length at most nwhere n = |V |.

To accomplish this, we will show three properties of so-called “reachability sets” of the ver-

tex: weak monotonicity, complementary inclusion, and then strong monotonicity. To start,

note that for a finite journey of length i, we can write the journey as

J = (vt0 , vt1 , . . . , vti)

We say this journey “reaches” or “ends at” vertex vti and “starts at” vertex vt0 . A reachability

set is a set Ui ⊆ V of vertices that can be reached in an t0-journey of exactly length i such that

139

the journey starts at vs. We let U0 = {vs}.

We will first show that for a holding digraph sequence, the sequence of Ui satisfy weak

monotonicity, in that

U0 ⊆ U1 ⊆ · · · ⊆ Un ⊆ · · ·

Note that with a holding digraph sequence, U1 is non-empty, in that it at least includes vs.

Therefore, suppose that vertex vu ∈ Uk for some k. Then, vu ∈ Uk+1 since (vu, vu) ∈ Ek+s

by the holding property. In other words, we can extend a length k journey that reaches vu to a

length k + 1 journey by appending vu.

Next, we show that for any digraph sequence of connected digraphs, we have complemen-

tary inclusion. In other words, if V \Uk is non-empty, then there exists some vertex vc ∈ Uk+1

such that vc ∈ V \ Uk. First, suppose V \ Uk is non-empty. Because we assumed a holding

digraph, Uk must be non-empty, so there must be at least one vertex in this set. Finally, note

that because our graphs are connected, there must exist some edge (vc−1, vc) ∈ Ek where

vc−1 ∈ Uk and vc ∈ V \Uk. If this were not true, then Uk and V \Uk would be a partition of

the vertices of the graphGk without a path between them, which is a contradiction.

Finally, we combine these properties to get strong monotonicity: either Uk ⊂ Uk+1 or

Uk = V . Moreover, if Uk ⊂ Uk+1, then |Uk| + 1 ≤ |Uk+1|. In other words, the chain

of reachability sets must increase in size by at least 1. Thus, we can conclude that Un−1 =

V , which gives us a uniform bound n. This bound is generically tight, e.g. an unchanging

dynamic network of a base graph that is a cycle with all self-loops achieves this bound.

Finally, we provide a simple result that shows that the dynamic diameter must change incre-

mentally, which establishes another bound on how dynamic networks evolve.

Proposition 4 (Non-Stranding Bound on s-diameter). A non-stranding digraph sequence G

with finite s-diameter has finite t-diameter for all t ≤ s. Moreover, if the s-diameter is some

finite value c, then the (s − 1)-diameter is at most c + 1 and this bound is tight. Finally, note

that if the s-diameter is infinite, then the t-diameter is infinite for all t ≥ s.

Proof. Our main observation is that non-stranding sequences never disconnect paths.

140

Let us first begin by assuming that the s-diameter is some value c. Take two vertices u, v.

Starting at time s − 1, we know that umust have one outbound edge, as the sequence is non-

stranding; call this edge (u,w). By the definition of s-diameter, we know the shortest journey

length fromw to v starting at time s is at most c. Therefore, the (s − 1)-diameter is at most

c+1, which is a relatively conservative bound, though we will not examine the tightness claim

in detail.

From here, we can prove the rest of our claim through two immediate observations: first,

since s is just some finite number, the 1-diameter is bounded from above by c + s, which

is certainly finite. Finally, we note that the last statement is simply the contrapositive of our

claim.

6.1.2. Summary Graphs

The time-varying nature of space networks makes it challenging to use traditional graph the-

ory and graph analysis to model delay tolerant networks. Static graphs are simple methods of

conceptualizing networks, but often do not fully represent the heterogeneity of delay tolerant

networks. Static graphs lack the nuance to convey edges that come in and out, extensive traver-

sal time, and lack of end-to-end connectivity that are characteristic of space networks. On the

other hand, while temporal graphs better encapsulate space networks, they are far more com-

plicated to work with and make graph analysis more challenging.

In this subsection, we propose a novel concept of graph summarization. In essence, we

convert a complex, dense data structure (that of a digraph sequence) into a compressed repre-

sentation of a single weighted digraph. Summarization captures essential characteristics of a

digraph sequence, without the overwhelming storage cost of maintaining the full sequence. In

addition, summarization can extract salient information that may not be so obvious from the

full sequence.

We will loosely use the term “summary graph” to refer to a weighted digraph that arises

141

from a “summarization” of a graph sequence. As from before, we assume the definition of

a digraph and that of a discrete-time digraph sequence. More precisely, the basic precept of

creating a graph summary is to find a map f that maps a graph sequence G to a single, static

graphG.

Edge Weighting and Completeness

We can also define the concept of an “edge weight” that assigns a weight to each edge. More

precisely, we write a digraphG = (V,E,w), where

w : E → R≥0 ∪ {+∞}.

This weight could represent a variety of things for a static (di)graph. Introductory examples of

edge-weighting techniques include, but are not limited to:

1. The amount of time required to traverse the edge

2. The capacity of the edge

3. The cost of traversing the edge

4. The percentage of time in which the edge is disconnected in a given time interval

5. The percentage of time in which the edge is connected in a given time interval

Notably, we have not placed any conditions so far on the weight function, other than that

it be a non-negative real number or positive infinity. By convention, though, depending on

what the edge weight represents, we may “extend” the domain of the weight function to be de-

fined over all pairings V ×V and assign any pair (i, j) /∈ E the weight 0 or+∞ depending on

context. In this sense, we will consider each (di)graph in a sequence to be a complete (di)graph

to make certain definitions easier to wrangle.

Finally, we must harmonize the definition of the weight function with a digraph sequence,

as it is not immediately obvious how this definition would extend to a graph sequence. We

142

define it as follows

G = (Gt = (V,Et)t∈T, w)

where

w : V× V× T→ R≥0.

In other words, the weight function maps from a pair of vertices and the time-indexing set to

a real-number. In our notation, we will writewe : T → R≥0 to refer to the weight function

of a particular pair of vertices e = (i, j). We also impose one additional condition: thatwe be

integrable with respect to the standard measure of the time-indexing set.

Types of Dynamic Networks

Our definitions operate well with different notions of time-indexing and we can define four

different types of graph sequences:

1. An infinite, discrete-time graph sequence: T = Z≥0.

2. An infinite, continuous-time graph sequence: T = R≥0.

3. A finite, discrete-time graph sequence: T = {0, . . . , n} ⊂ Z≥0 for some n ∈ Z≥0.

4. A finite, continuous-time graph sequence: T = [0, T] ⊂ R≥0 for some T ∈ R≥0.

Graph Summarizations from Different Sources

One class of summarization comes from time-based summary statistics, which do not focus

on the particular weights under a weight function, but rather report the underlying time of

occurrence for various events. In other words, the weights of the summary graph from the

time indexing set, rather than from the domain of the original weight function. Some exam-

ples include:

• percent of time where the connection is present within the discrete time interval

143

• average length of time that a connection occurs for within the discrete time interval, in

this case one day

• longest length of time that a connection occurs for within the discrete time interval

Alternatively, we could perform summarization with data-based summary statistics,

which draw values from the original weight function of the sequence. Some examples include:

• Maximum amount of data packets that can be transmitted along an edge within the

discrete time interval

• Maximum amount of data packets that can be transmitted along one connection within

the discrete time interval

• Average amount of data packets that can be transmitted along one instance of a connec-

tion

Centrality Measures

In static graphs, there are similar notions of summarization, one popular form being central-

ity measures that characterize the influence of particular nodes or edges within a graph. We

provide a brief overview of those notions of centrality here.

• Katz Centrality: it measures the relative influence of a node in a network by taking

into account the number of walks between pairs of nodes in a network295. Katz cen-

trality first measures the number of immediate neighbors of a node, and then the other

nodes that can be connected from the immediate neighbors. Each connection is as-

signed a weight based on an attenuation factor a and a distance associated with the

attenuation factor. The Katz centrality of node i:

Ci =
∞∑
k=1

n∑
j=1

ak(Ak)ji (6.1)

144

whereAk is the adjacency matrix (cf. Definition 2.1.6). By the structure ofA, each

entry ofAk represents the number of paths of length k between two vertices. A more

central node according to Katz centrality is a node that not only has multiple connec-

tions, but whose neighboring connections are close by. This technique functions well

when we might want to use Katz centrality in the computation of shortest path (or at

least the idea of it).

• Eigenvector Centrality: it assigns scores to nodes based on the relative scores of their

connected nodes. Thus the eigenvector centrality of a node is the weighted average of

the centrality values of its connected neighbors296. In particular, the weight x ∈ R|V |
≥0 is

a vector such that

xu =
1

λ

∑
v∈N(u)

xv (6.2)

whereN(v) is the neighborhood (cf. Definition 2.1.2) of v and xv is the relatively cen-

trality of the vertex v. Because of the structure of the adjacency matrixA, we can write

xu =
1

λ

∑
v

auv · xv (6.3)

Ax = λx (6.4)

This last form gives rise to the term eigenvector centrality; for undirected graphs, the ad-

jacency matrix is symmetric, so by the Spectral theorem and because we require x to be

non-negative, by the Perron–Frobenius theorem, we are guaranteed the existence and

uniqueness of a satisfying eigenvalue λ (i.e. the greatest eigenvalue ofA) and desired

associated eigenvector x, which is exactly our centrality scores.

• Degree Centrality: measures the number of connections a node makes with its neigh-

bors.

• Betweenness Centrality: a measure of howmany times a node lies on the shortest

path between any pair of source and sink nodes.

145

Example: Instant‐Graph Path Summarization with Cost

This method is mainly defined for continuous-time graph sequences, though we will also de-

fine appropriate notions for the discrete-time case, as well. We call a graphGt at a particular

timestep an instant graph at instance t. This method focuses on paths defined on weighted

instant graphs where the weights represent the cost of traversing an edge.

We will use the definition of a path introduced as Definition 2.1.4. For the purposes of

this subsection, we will assume that each graph in our sequence is complete; if we had wanted

to exclude an edge, we simply assign the instant cost of those edges to be+∞. Additionally,

we assume that the weights are strictly positive at any instant. The instant weight of a path is

the sum of the instant weight of the edges; if any edge has an instant weight of+∞, then the

instant weight of the path is+∞.

Therefore, given a vertex set, we can define the set of all possible finite paths from one ver-

tex to the next asP(i, j) and the set of all possible finite paths asP . From here, given a graph

sequence, we can define the instant set of shortest paths as a set SPt(i, j) ⊆ P(i, j) such that

a path is an instant shortest path if:

1. its cost is not+∞ at instance t

2. its cost is not greater than the cost of any other path inP(i, j) at instance t

Finally, we say that the set SPt =
∪

(i,j)∈V×V SPt(i, j)

From here, we define shortest path participation ω of a path P for a continuous-time se-

quence as

ω(P) =
1

T

∫ T

0

1P (t) dt for a finite sequence

ω(P) = lim
τ→∞

1

τ

∫ τ

0

1P (t) dt for an infinite sequence

146

and for discrete-time sequence as

ω(P) =
1

N + 1

N∑
t=0

1P (t) for a finite sequence

ω(P) = lim
N→∞

1

N + 1

N∑
t=0

1P (t) for an infinite sequence

where 1P (t) is an indicator function for P ∈ SPt.

One thing to note: each path must have a start edge and end edge; each edge starts and ends

at a particular vertex. Therefore, it is well-defined to say that a path starts and ends at a partic-

ular vertex. Thus, in our definitions ofw, we could have restricted the indicator function to

look at the the shortest path set that originates and terminates at the appropriate vertices; this

would not change the calculation.

In all four cases, we are suggesting a simple idea: take the proportion of time that each path

acts as a shortest path. Each path as a shortest path participation between 0 and 1. If the graph

becomes disconnected, the shortest path set could be empty, which works well with our def-

initions. We call this “instant-graph summarization” because we consider traversal for each

instant graph separately, without really taking into account traversal across time.

Finally, we can define the summary graph as a complete graph with edge weights to be the

shortest path participationwith weight function ω̄, where

ω̄(e) =
∑

P∈P:e∈P

ω(P)

Proposition 5 (Bounds on ω̄, ω). ω̄ is non-negative and finite. ω is non-negative and at most 1.

Proof. ω is non-negative, as it is either the integral over or the sum over a non-negative func-

tion, namely an indicator function. ω̄ is thus non-negative, as it is the finite sum of non-negative

values.

Bound from above, we see that ω is at most 1 because the indicator function 1P (t) ≤ 1.

147

For finite-time, we see that

1

N + 1

N∑
t=0

1P (t) ≤
1

N + 1

N∑
t=0

1

=
1

N + 1
(N + 1)

= 1

and that

1

T

∫ T

0

1P (t) dt ≤
1

T

∫ T

0

1 dt

=
1

T
(T)

= 1

To show this for our infinite time definitions, we see that

∫ τ

0

1P (t)dt ≤
∫ τ

0

1dt

and
N∑
t=0

1P (t) ≤
N∑
t=0

1

respectively for all τ and allN . Solving for the right-hand side of both inequalities, we see that

∫ τ

0

1dt = τ

and that
N∑
t=0

1 = N + 1

respectively. Finally, when taking the limit of

lim
τ→∞

1

τ
τ

148

and of

lim
N→∞

1

N + 1
N + 1

we yield 1 in both cases. Therefore, we know that ω for any path is at most 1.

Finally, we must show that ω̄ is finite for edges. However, this follows easily from the fact

that the number of finite paths without repeated edges (i.e. without cycles) in a finite, simple

graph is itself finite. Therefore, ω̄ is summing a finite number of values that are at most 1 and

so is finite.

Example: Traversal‐Time DiGraph Journey Summarization with Traversal Time

We already defined a few simple methods of attributing edge weights above. In this subsection

we walk through a more complex example of defining edge weights.

Here, we assume that the weight function on the digraph sequence defines the “traversal

time” of a particular edge, i.e. howmany units of time are required to traverse the edge. For

now, we only consider continuous-time sequences, but our definitions could be easily adapted

to the discrete-time case with a bit of care. Here, by convention, traversal time is+∞ if there

is no edge; therefore, we can assume our digraph sequence is complete.

We define the velocity as νe(t) = 1
we(t)

. We denote the velocity to be+∞ ifw = 0 and

ν = 0 ifw = +∞. Therefore, we can define the notion of s-traversal time of an edge, s(e).

Define the s-traversal completion set*:

tcss(e) =

{
x :

∫ x

s

νe(t) dt ≥ 1

}
(6.5)

with the convention that
∫ y
y
(+∞) dt = +∞. If tcss(e) is empty, then s(e) = +∞; other-

wise,

tts(e) = inf{tcss(e)} − s. (6.6)

*Note that computing this value in practice is tractable, but requires some optimizations to do efficiently.
We do not compute the entire set, but instead directly compute tt. See Appendix A.3.2 for more information on
how this is computed, specifically Algorithm 3.

149

What does this definition accomplish? It captures the amount of time (in some time unit)

it takes to traverse one whole edge given that the traversal velocity is given by ν. We define it

through the inf of a set to handle some analytic issues with+∞. As a helper, we define the

s-traversal end time of an edge tets(e) = inf{tcss(e)}, which is defined to be+∞ if tcss(e)

is empty. We will, therefore, define the s-traversal time of a path (using all of the previous defi-

nitions of a path) with the following recursion:

tts(P)1 = tts(e1)

tets(P)1 = tets(e1)

tts(P)2 = tttet
s(P)1(e2)

tets(P)2 = tets(P)1 + tts(P)2

...

tts(P)k = tttet
s(P)k−1(ek)

tets(P)k = tets(P)k−1 + tts(P)k

with the convention that if tt or tet reaches+∞ at any step, then so do the rest. We can write

tts(P) = tts(P)k.

Thus, we can define the notion of a shortest path SPt(i, j) as the set of shortest paths min-

imum cost with respect to s-traversal time and that have s-traversal time. This set could be

empty. We can, therefore, use the same definitions as before of ω, i.e. shortest path participa-

tion.

As such, we have developed a model for defining summarization functions along edge

weights, where edge weights can represent higher-level changes about the network structure

and connectivity. In instances where the complexity of time-varying graphs proves too com-

putationally heavy for graph analysis, summary graphs could serve as a bridge from static

graphs to temporal graphs.

150

6.1.3. Algebraic and Applied Topology

Zigzag Persistence

Persistent homology is a powerful tool in applied topology, of which we have seen some con-

structions in Section 5.181. Zigzag persistent homology allows us to track network connec-

tivity changes80,41. Zigzag persistent homology is based off of standard persistent homology,

a tool from algebraic topology that is used to study features of topological spaces. The main

differences between zigzag and standard persistence stems from the inclusion maps; in zigzag

persistence, the inclusion maps are allowed to go either direction whereas in standard persis-

tence, they are restricted to a single direction. This difference allows us to consider changes in

connectivity as time elapses.

Zigzag persistence is one technique that can assist in analyzing a dynamic network. In par-

ticular, zigzag persistence allows us to extra multiscale information from dynamic networks,

respecting both spatial edges and temporal edges between nodes. Calculating the zigzag per-

sistence summarizes the connectivity information of the network. We introduce zigzag persis-

tence here and then briefly demonstrate an example.

LetXi be a topological space. We define a zigzag sequence of topological spaces as

X1 ↔ X2 ↔ . . .↔ Xn

where↔ is an inclusion map that either mapsXi → Xi+1 orXi ← Xi+1. Recall, the

homology functor (with coefficients in a field) is a functor that maps topological spaces to

vector spaces. Hence, the zigzag module of a zigzag sequence of topological spaces is

Hp(X1)↔ Hp(X2)↔ . . .↔ Hp(Xn).

We can use zigzag persistence (with Z/2Z coefficients) to understand the structure and fea-

tures of a topological space. For example,H1(Xi) describes howmany 1-dimensional holes

151

are inXi. In the example below, we see that a 1-dimensional hole is born at t = 2 and dies at

t = 3.

Leveraging our definition of a time-varying network, the most natural way to model a com-

munication network is to treat satellites, ground stations, and other members of the network

as the vertices and treat contacts between members of the network as edges. Thus, for anyGt,

this forms a simplicial complex. From this simplicial complex, for a given time interval [1, n],

letN be the zigzag sequence

G1(V,E1)↔ G2(V,E2)↔ . . .↔ Gn(V,En).

Note, each arrow represents the inclusion map between two graphs. This arrow will change

direction based on the direction of the inclusion. Then, we can apply the homology functor

to our zigzag sequence to get

Hp(G1(V,E1))↔ Hp(G2(V,E2))↔ . . .↔ Hp(Gn(V,En)).

Therefore, we can calculate the pth homology for our zigzag sequence of graphs. Note, for

p ≥ 2, the pth homology of a graph will be zero, so we are specifically interested in p = 0, 1.

152

Figure 6.1: A picture of an example satellite network from a simulation tool used atNASA. Note, connections are denoted
by a line between two devices.

The 0-dimensional homology tells us how often we have a communication device that is

disconnected from the network. Further, the 1-dimensional homology captures when all com-

munication devices are connected. This information can be used to group satellites by either

continuous connectivity or by location. We perform this analysis on the system displayed in

Figure 6.1, which features the objects and ground stations at MRO, LRO, TDRS 8, TDRS

10, TDRS 12, TDRS 13, Canberra, Madrid, Goldstone, White Sands, and Guam.

Intuitively, it might make sense to group the four TDRS satellites together, as they are al-

ways connected. Alternatively, we could group each TDRS with the ground station it is clos-

est to. There might be additional groupings not listed, but zigzag persistence might provide in-

sight as to what those groupings are. Over the course of 1 day, the zigzag persistence diagram

153

has 110 bars which captures the connectivity of the network for that day. Of note, there are

eight 1-dimensional holes that live for the entire day. Hence, this tells us that some subsection

of satellites are always connected. We can use this information to construct a new network

where those satellites are represented by a single node. Further work will be done to test the

different subnetworking options by recalculating the zigzag persistence of the new network

model and computing the bottleneck distance between the two networks.

6.1.4. Conclusion and Future Work

Here, we have presented several topics that we hope can contribute to a firmer mathematical

foundation for Delay Tolerant Networking. Here we summarize the different approaches

and how they relate to foundational networking aspects. Then, we dive deeper into how this

research may continue with a future works portion for each topic.

Connections across Mathematics

Much like the layers of the Open Systems Interconnection (OSI) model represent different

layers of abstraction, our mathematical models represent different layers of abstraction in

network understanding. At its core, a network is built on the connections present, and we

present two different methods for modeling connectivity in a time-evolving network. How-

ever, this work also sits in the milieu of a much broader context in this area, which we also

indicate here. All of our interesting approaches come from graph theory, but each presents its

own approach with corresponding pros and cons.

• Temporal graph theory provides precise connection information for time-evolving

networks with a variety of representations. Different representations can be better or

worse as networks grow in size.

• Directed multigraphs are a fruitful data structure for routing algorithms, as demon-

strated by the updated pathfinding algorithm for CGR presented elsewhere.

154

• Summary graphs provide useful statistics for comparing connection availability, and

may provide bridges from temporal to more traditional graph theoretic results using

centrality measures. However, summary graphs represent a potential for information

loss, such as ordering of intervals, that could be extremely relevant for different applica-

tions.

Once connectivity is established, being able to analyze connectivity structures and discover

strong subnetworking options is our next layer up. While small networks might be better un-

derstood directly, part of the goal in introducing algebraic objects is to provide support in

returns to scale. Invariants from applied algebraic geometry and topology can be brought to

bear on networks of any size.

• Homology algebraizes connectivity information from a graph enabling computer legi-

bility and returns to scale136.

• Zigzag persistent homology provides a means of tracking continuous chunks of connec-

tivity over time, including joining and separating connections. This provides a strong

foundation for automated subnetworking decisions80.

• Graph varieties provide a different algebraic interpretation of connectivity information

which enables more direct relations to more powerful data structures, such as sheaves63.

Once structures are established and analyzed, optimization is the next layer up. Game the-

ory provides an interesting framework for constructing and comparing network optimization

approaches that may be helpful in addressing congestion in delay tolerant networks.

Temporal Graph Theory

Temporal graph theory is a still young field. While we introduce some of our work in formal-

izing temporal graphs in subsection 6.1.1, there is much more to describe and prove about

temporal graphs and graph sequences in forthcoming papers. This includes studying various

properties of temporal graphs and determining extensions of network properties to temporal

155

networks. One direction of exploration in temporal graph theory that could be particularly

fruitful for space networks is the study of periodic temporal networks. The fact that orbits

are often naturally periodic could be leveraged in the study of periodic temporal graphs and

leveraged for the benefit of network analysis.

Another key thing to note is a shift in information available in a temporal graph. In the

cases we are considering in this section, the graphs are pre-determined and known, so global

statistics can be computed. However, in practice we may only know the current configura-

tion of a network without knowing its future configurations – perhaps relying on probability

to provide possible futures. A temporal graph construction that views temporal graphs as a

dynamical system rather than a fixed object, would be extremely valuable to the field. This

would also be remarkably applicable to future space networks.

Another consideration is how local perspectives influence the system. Note that from the

vantage point of any given node at any given time, its imagining of the network will differ

from every other node. As such, constructing network views locally will have great influence

on consistency in routing across different components. It is imperative that tools, such as

sheaves, are utilized to synthesize and validate consistency of data across temporal networks.

This may be useful in the probabilistic or deterministic settings.

Directed Multigraphs

While not described in detail in this work, one method for modeling time-evolving networks

using directed multigraphs, and provided an alternate approach to pathfinding in Contact

Graph Routing based on these multigraphs. Upcoming work in205 will provide more of the

details of this alternate algorithm, including a proof that it requires less than or equal to the

number of iterations taken by the previous Contact Graph Dijkstra Search. It will also in-

clude experiments on simple networks simulated in SOAP that compare the two algorithms.

Future work in this area will likely continue to reformulate CGR in the language of di-

rected multigraphs. As mentioned above, one opportunity for this change in perspective

may be in the implementation of Yen’s algorithm, which uses Dijkstra’s algorithm repeatedly.

156

While the existing version of CGR uses a version of Yen’s algorithm for contact graphs, it is

likely this could also be put in the framework of the multigraphs considered here. We hope

that reformulating CGR in the language of multigraphs will not only increase the speed of

computations but also lead to a more transparent approach to routing and serve as a founda-

tion for future algorithms.

Centrality Measures and Summary Graphs

Summary graphs, which we exposit in Section 6.1.2, represent an interesting way to collect

summary statistics for time-varying graphs. Determining which statistics are worth represent-

ing in this structure is a significant future project. Since summary graphs represent a kind of

lossy compression of time-varying graph structures, knowing which statistics are preserving

valuable information from the time-varying graphs is valuable outright. Moreover, if we want

to feed this information into a machine learning algorithm for optimization, summary graphs

seem primed for supplying concise yet relevant information.

Another interesting application of summary graphs comes in the form of network central-

ity measures. Typical network centrality measures are better suited to static graphs rather than

dynamic graphs. So, applying network centrality measures to the summary graph can yield

interesting ways to detect central nodes in a dynamic graph. Also, different summary statistics

will likely correspond to different rankings for the same centrality measures. Such a compari-

son would be of great interest to us.

There are also adaptations of network centrality measures for time-varying networks al-

ready. It would be interesting to compare the results of these dynamic centrality measures

with the same measures applied to different summary graphs. Certainly, this could detect

some of the information loss from compressing to the summary graph.

Zigzag Persistent Homology and Applied Topology

Zigzag persistence is an important topological tool and we provide some foundational infor-

mation and example in Section 6.1.3. One further extension for exploration would be leverag-

157

ing the bottleneck distance to compare the persistence diagram of a subnetwork with that of

the larger, original network80. The bottleneck distance can be described in the following way:

Definition 6.1.8 (Bottleneck Distance). Given two finite diagramsD1, D2 ⊂ R2, we define

amatching as a bijectionm such thatm : D1 ∪ L → D2 ∪ L, where L ≜ {(x1, x2) ∈ R2 :

x1 = x2}. (n.b. strictly speaking, diagrams are multisets, but we can assume that all points in

our diagrams are distinct, since this does not alter the rest of our definition.) The cost c of a

matching is

c(m) ≜ sup
x∈D1

max (|x1 −m(x)1|, |x2 −m(x)2|)

Finally, we can say the bottleneck distance d between two diagrams is defined as

d(D1, D2) ≜ inf
m∈M

c(m)

whereM is the set of all matchings between the two diagrams.

The bottleneck distance is indeed a proper metric80. This metric finds the lowest-cost per-

fect matching between two persistence diagrams using the sup norm between points. It ac-

counts for the fact that two diagrams may have a different number of points by augmenting

the matched sets with all points on the diagonal. There are technical reasons why the points

on the diagonal are the “correct” default point to match to, but this information is beyond the

scope of this dissertation and is not salient. Equipped with this metric, we can thus compare

persistence diagrams of subnetworks with each other and with the persistence diagram for the

whole network.

Another way we hope to apply zigzag persistence to space networking is to apply it within

the context of CGR. After constructing the subnetworks, one can construct a contact plan

with this new structure. This reduces the number of vertices which in turn reduces the com-

putation time. Again, we can use the bottleneck distance to compare the two networks and

to see if this small change does not drastically change the underlying structure of the network.

We hope to use this as a way to justify subnetwork construction and show the feasibility of the

groupings.

158

The final extension we would like to explore is looking at the clique complex of the network

as opposed to the simplicial complex associated to the network. A collection of vertices with

all pairwise connections is a simplex in a clique complex; if we have three points connected,

we fill in the triangular face, if we have four points connected to each other, we fill in the tetra-

hedron. This provides more information about the level of connectivity and the interaction

between multiple devices.

Graph Varieties and Applied Algebraic Geometry

The theory of graph varieties allows us to model a static network as an algebraic variety. Space

networks, however, are not static. Thus, it is necessary to formulate a theory of graph vari-

eties that can be applied to temporal networks. A naïve first approach to such a theory is to

view a temporal network as a sequence of graphs and simply compute the corresponding se-

quence of graph varieties, which as discussed in Section 1.2, does not work in general. One

possible solution is to leverage cellular sheaves, which are a powerful tool for analyzing net-

works63. Subsequently, an algebro-geometric analogue of the Dijkstra sheaf would, in theory,

give insight into the problem of finding shortest paths in a temporal network204. Dijkstra

sheaves are a specific type of sheaf that corresponds this algebraic topological structure with

Dijkstra’s shortest-path algorithm on static networks. It is known that Dijkstra’s algorithm

already works on temporal networks with sufficient regularity conditions69; combining this

result with Dijkstra sheaves would potentially deliver a “temporal Dijkstra sheaf” that could

provide insight into the structure of dynamic networks.

Game Theoretic Networking

As space networks become increasingly complex, requiring global communication for decision-

making is likely impossible given propagation delays that outlast windows of opportunity for

real-time feedback. It is clear that new modeling techniques for routing decisions are essential

for further space exploration. Game theory provides a well-developed foundation for under-

standing how decision-making might function in a network with incomplete information.

159

It is, however, likely that there are subnetworks that can share enough data to be coop-

erative although between two such subnetworks cooperation is infeasible. Such mixed ap-

proaches have been used to studyWi-Fi congestion in apartment buildings and could be gen-

eralized and reapplied to large-scale DTNs286. It should be investigated if the output could be

used for real-time decision making for routing decisions, for example for load balancing.

160

6.2. Routing Problems and Dynamic Graphs

In this section, we consider direct applications of our foundational dynamic graph theory to

Delay Tolerant Networking (DTN). We introduce this important application area, provide

its appropriate mathematical context, and then provide a few code-driven applications (e.g.

an FPGA-based project in tropical geometry and parameterized graphs). Through the lens of

dynamic networks, we see not only how we can solve problems in networking with dynamic

graphs.

6.2.1. Background

Delay Tolerant Networking (DTN) is the standard approach to the networking of space sys-

tems with the goal of supporting the Solar System Internet (SSI). Current space networks

have a small scale and often depend on rigorously scheduled (pre-determined) contact oppor-

tunities; this manual approach inhibits scalability. The goal of this section is to recast these

scheduling problems in order to apply the optimization machinery of tropical geometry.

Contact opportunities in space are dependent on such factors as orbital mechanics and

asset availability, which induce time-varying connectivity; indeed, end-to-end connectivity

might never occur. Routing optimization within this structure is classically difficult and typ-

ically utilizes Dijkstra’s algorithm as applied to contact graphs. Alternatively, we follow the

successes of tropical geometry in train schedule optimization, job assignments, and even tra-

ditional networking, by extending this approach to this more general (i.e. disconnected) prob-

lem space.

These successes imply tropical geometry provides a useful framework in the context of

DTNs, starting with applications to queuing theory and long-haul links. Recently, tropi-

cal geometry has been applied to parametric path optimization on graphs with variable edge

weights. In this work, we extend these advances to account for the problem of routing in a

space network, and find that tropical geometry is well-suited to the challenges offered by this

161

new setting, including contact schedules featuring probabilities. Our approach leverages the

combinatorial nature of the problem to give feasible shortest path trees in the presence of vari-

able channel conditions and latency, evolving topologies, and uncertainty inherent in space

routing.

We discuss our tropical approach to DTN for two Python implementations, a Verilog

Tropical ALU implementation, tropical frameworks for other parametric graph problems,

and solution stability. Lastly, a program for future work is included to illuminate the path

ahead.

6.2.2. Introduction

One major complication associated with space networking is that the links between assets

are constantly changing. Both in terms of links coming up and down, but also in terms of

channel characteristics. One such characteristic is latency, which is the time it takes for infor-

mation to leave the transmitter and arrive at the receiver. In space, this latency mainly arises

from light travel time, which can be significant (as many as tens of minutes between Earth and

Mars).

In addition, the main form of transmissions being electromagnetic waves means that a

space network will suffer due to the inverse-square law. This law basically dictates that the

power received is inversely proportional to the square of the distance to the transmitter. From

an information theoretic perspective, this severely limits the data rate one could hope to achieve

based on the physics of light alone, even ignoring any complications with modulations or elec-

tronics. Note that both latency and received power depend on distance, a quantity which is

constantly changing for assets in space. subsection 6.2.3 details an algorithm and two imple-

mentations that account for these limitations by casting them as a parametric shortest path

problem.

Below, in Figure 6.2, we see a small example of a space network between the Earth and five

satellites. Despite the relatively ‘small’ size - there are only six assets - the graph is highly depen-

162

dent on orbital mechanics and hence time. This emphasizes the need for rigorous approaches

to parametric graphs in space communications.

Figure 6.2: An example space network that connects a system of satellites with communication nodes to Earth.

Parametric graphs are modeled as graphs with variable weights, see Definition 6.2.1. These

weights could correspond to distance (in light-seconds) or bit rate (in Mbps) for applications

to DTN. Regardless of their interpretation, one aims to find optimal paths as a function of

these weight parameters xi, which themselves could depend on time. The complexity of this

problem is reflected in a partition of parameter space, which depends on the topology of the

network as well as given weights. Over each region in this partition, optimal routing is de-

termined using a shortest path tree in the graph, but different regions may have the same or

different trees. Generating these regions and trees is accomplished in the tropical setting using

Joswig’s algorithm147, which is reviewed below. For a concrete example of a parametric graph,

consider Figure 6.3. Depending on the value of x, different routing decisions will be used and

a complete classification of these routing decisions, using tropical geometry, will be provided

later; see Figure 6.4.

163

Figure 6.3: An example of a parametric graph.

Another application of these methods comes from a recent analysis of the current standard

of DTN routing, contact graph routing95. Originally, it was thought that contact graphs were

acyclic, but it has recently been shown that they can in fact feature routing loops258. Hence,

one feature of our analysis is the ability to track how topological features - such as loops - both

arise and disappear as the underlying parameters vary. This motivates a more general paramet-

ric approach.

To summarize our contributions, we initiate a more general parametric and tropical geo-

metric approach to time-evolving graphs with variable edge characterizations. We provide a

slight generalization of the tropically inspired method of Joswig147 for solving the parametric

shortest path problem and prove two novel implementations of this algorithm: one in Python

and one using a Verilog 32-bit tropical arithmetic logic unit (ALU). Key to our approach is

the extraction of regions of parameter space where certain shortest path trees are optimal. By

164

understanding these, one could design in advance what the routing tables should look like for

portions of a Solar System Internet. We then move beyond the tropical setting of Joswig to

provide a more general mathematical framework for other parametric graph problems and

characterize stability of solutions to these in a novel way. We anticipate that these methods

will be highly applicable to DTN as the characteristics of these networks include not only

time varying capacities, but also other time varying summaries of note, such as centrality.

Tropical Geometry and Max‐Plus Algebra

Before we proceed with the main line of analysis, we offer a quick summary of tropical geome-

try and its application to graph theory. Max-plus algebra and tropical geometry are rich topics

and their application to graph theory is well-studied183,57,12.

Tropical geometry, in broad strokes, can be thought of as a piecewise-linear version of al-

gebraic geometry, which studies solution sets (i.e. zero sets) of systems of polynomials. The

polyhedral view of tropical geometry allows one to phrase things like optimization problems

fairly easily, as we will see in subsection 6.2.3 and beyond.

Whereas ordinary geometry occurs over the ring of real numbersR, tropical geometry oc-

curs over the min-plus* semiringT = R ∪ {∞}where the operations of addition and multi-

plication are redefined as follows:

a⊕ b := min{a, b}

a⊗ b := a+ b

To illustrate how this works, we offer the following examples:

• 5⊕ 7 = 5,

• 5⊗ 7 = 12,
*One can define the max-plus semiring by instead including−∞ and defining the⊕ operation asmax

instead. We will use the min-plus semiring because in our optimization setting we wish to minimize path length.

165

• a⊕b = a,

• a⊗b = ba,

• 5⊕∞ = 5, and

• 5⊗∞ =∞.

To see why a⊕b = a, note that a⊕b = min{a, . . . , a} = a, as this is a “added” to itself b

times. To understand a⊗b, observe that for b ∈ Z≥0 we may view exponentiation as repeated

application of the⊗ operation, b times. To extend this definition to all integers, we note that

a⊗−1 = −a since this is the additive (tropical multiplication) inverse of a. For b ∈ Q, we

can observe that (a⊗ 1
n)n = a so n(a⊗ 1

n) = a, so a⊗ 1
n = 1

n
a. Lastly, we can perform a

process known as completion to get to our extended real values, but this is beyond the scope of

this work, but can be found in the core literature in analysis and related subjects246,161,278,156,

and126.

Generalizing the rules of tropical arithmetic to tropical matrices casts new light on classi-

cal lessons from graph theory. Recall that associated to a (di)graph is the adjacency matrixA,

whereAi,j = 1 if there is an edge from vertex i to vertex j, andAi,j = 0 otherwise. It is well

known that taking the nth power of the adjacency matrix enumerates walks from vertex i to

vertex j of length n.

Analogously, one can perform a similar process for a weighted (di)graph in the tropical set-

ting, where the entries in the matrix are now the weights of the arcs. Taking tropical powers of

this weight matrix now calculates the total weight of the shortest walk from vertex i to vertex

j. See57 207 for a detailed explanation on this process, as well as a proper definition of tropi-

cal matrix operations. These observations have yielded fruitful insights in the study of train

schedules, robotics, and many other applications; see285.

166

6.2.3. Joswig Algorithm Generalization

For this subsection, unless explicitly stated, we are working with weighted, parametric di-

graphs, i.e. directed graphs where some arcs have constant values associated with them (weights),

and some arcs have variables associated with them (parameters). Further note that in147, they

work with parametric digraphs satisfying an additional condition which they call “separabil-

ity” which means that each parameter only appears as part of one arc’s parameter expression.

Figure 6.3 satisfies this separability property. For our work, we allow our graphs to not have

this quality so that we can eventually substitute functions of time for our parameters. This

is a minor distinction, but it does limit the claims we can make about our overall solution

spaces at the end of our work. Lastly, we assume that all parameter values and edge weights are

restricted to be non-negative, and that our graphs have a single sink (or source). These are typi-

cal assumptions of Dijkstra’s algorithm, which is employed as a step in the Joswig algorithm.

Definitions

In the subsections that follow, we assume the reader has some familiarity with data structures

and algorithms. For the reader who wishes to gain this background knowledge, we refer to294

and148.

Let T be a spanning tree in a graphG. Define PT (v) as the cost of the unique path from

the source s to the vertex v in T . Furthermore, define d(vw) as the cost of the arc between v

andw, with d(vw) = ∞ if there is no arc. For a general path s = v1, v2, . . . , vn−1, vn = v,

the cost is given by summation, i.e.

P (v) =
n−1∑
i=1

d(vivi+1).

167

Figure 6.4: An analytical solution of cell decomposition and associated shortest path trees corresponding to Figure 6.3.
Results from applying the Joswig algorithm described below. Each interval shows the values of parameter x for which each
tree (T0, T1, T2) optimal. Note that there is a fourth tree omitted, which is the same as T0 except with the path to v1
going along the leftmost edge with weight 5. It is omitted because there are no values of x that make it optimal.

A parametric arc is an edge whose weight is given by a variable. We are interested in graphs

with (possibly) multiple parametric arcs and their corresponding parametric shortest path

trees. For emphasis, we recall that we restrict ourselves to non-negative edge weights for both

constant and parametric arcs.

Now that we’ve defined some notation, we can describe how one approaches parametric

graphs like the one in Figure 6.3. See Definition 6.2.1 for a formal definition of a parametric

graph.

Algorithm

The algorithm given in147 can be summarized as follows:

1. Take a weakly connected digraphGwith (variable) edge parameters x1, . . . , xn, ini-

tialized to any non-negative values α1, . . . , αn, fixing a source vertex s. Denote this

initialized graphG(α1, . . . , αn).

2. PerformDijkstra’s algorithm on the initialized graphG(α1, . . . , αn) to generate a

shortest path tree T rooted at s.

3. Now consideringGwith original (un-initialized) edge parameters, iterate through each

edge vw not in T as follows: consider PT (w) and d(vw) + PT (v). If they are incom-

parable, add PT (w) ≤ d(vw) + PT (v) to the system of inequalities associated with T .

Then generate a new tree T ′, obtained by removing the path in T tow and replacing it

168

with the path tow through v via vw. If T ′ is not already in the list, and is also a shortest

path tree, append T ′ to the list.

4. Repeat step 3 for each tree until no new trees are generated.

The result is a family of shortest path trees, along with systems of inequalities associated to

each tree that defines the region of parameter space where that tree is the shortest path tree.

A visual representation of this output is shown in Figure 6.4*. This process of taking a para-

metric graph, iterating through its paths, and generating trees along with inequalities is the

essence of the Joswig algorithm. This is in fact tropical because the systems of inequalities can

be viewed as (systems of) tropical polynomial equations, an observation which is explored

in57. Each shortest path tree T in the solution family is encoded as a set of monomials which

minimize a tropical polynomial for a certain subset of parameter space, which is defined by

the inequalities associated to T. Some trees will never be optimal for any value of the parame-

ters, which is reflected by the associated set of inequalities giving an unfeasible solution set (i.e.

bounding an empty region).

Implementations

The algorithm above was implemented† previously by Ewgenij Gawrilow in Polymake as an

optimized extension of Polymake 4.1. In an effort to make the implementation more acces-

sible and applicable to engineering problems, we developed two object oriented implemen-

tations written in Python with minimal dependencies. This not only makes it easier to read

and understand, but also makes things like field programmable gate array (FPGA) implemen-

tations much more feasible. Moreover, the implementation generalizes the algorithm: while

previous impementations required edge functions to be linear, the algorithm implemented

here was modified to apply to arbitrary functions, such as sin(t).

*Although we include dashed lines to indicate edges from our original graph, technically the shortest path
tree only consists of the solid edges.

†Link to implementation: https://polymake.org/extensions/polytropes

169

https://polymake.org/extensions/polytropes

To begin, we should first acknowledge the efficacy of the naive solution: the naive solu-

tion here would be to just sample points in the parameter space of the edge weights and keep

track of which sample points correspond to which shortest path trees. However, without

any good way to pick samples, this severely limits the accuracy to which one can approximate

the boundaries between different regions. Moreover, this approach doesn’t leverage the fact

that the regions in parameter space corresponding to a shortest path tree are all convex: If the

points x and y both yield the same tree T , then any point on the line segment between x and

y must also correspond to T . This observation gives us a good idea of how to start approxi-

mating solutions.

Figure 6.5: An example sequence of steps in the binary search.

Our first implementation is a boundary approximation method based on binary search,

and utilizes convexity of these regions in an essential way. The purpose of approximating is

to verify our other implementation, but also eventually the Polymake implementation. The

problem with this method is that it is inefficient in both memory and time, since it requires

sampling a large number of points. The advantage, however, when compared to the naive so-

lution, is that this approximation can be tuned to arbitrary precision, limited by floating point

accuracy, among other things. So, while it may not be practical for deployment in a space

170

network, it will at least be accurate enough to determine the validity of our more efficient

methods.

This method operates recursively. In one dimension, i.e. only one edge weight is variable,

the shortest path tree is found and recorded with the parameter set to the minimum value (e.g.

0). Then another tree is found with the parameter set to the sum of all constant weights (so ig-

noring parameters) in the graph*. If the two trees are the same, then we only have one shortest

path tree feasible and are finished. If they’re not, then one recursively performs a binary search

between these left and right bounds to find the boundary between the two regions, slowly

squeezing these bounds in. In the case that a sample lands on a region with a shortest path

tree not yet sampled, the problem is divided into two binary searches – one between the left

bound and the sample point, and one between the sample point and the right bound. This

process is repeated until the recursion depth reaches a specified limit. This recursion depth

determines the accuracy of the approximation, and depths of 5 or 10 seem to suffice for the

applications we tested.

Here’s an example corresponding to Figure 6.5. The output of this example from our im-

plementation is given in Figure 6.6.

1. Initialize † the search with L = 0,R = 14 = 2 + 3 + 4 + 5, and S = (L+R)/2 = 7.

2. Check containment of L, S, andR from step 1. Generate sample S = 3.5 sinceL = 0

corresponds to T0 andR = 7 corresponds to T2.

3. Repeat above to generate sample S = 1.75.

4. Checking sample S = 1.75 reveals containment in the region for T1, unique from T0

and T2 regions. Generate two new samples for two new searches, one between step 3’s

L and S, and another between step 3’s S andR.

*In one dimension, this is guaranteed to lie in the region extending off to infinity since any path without the
parametric arc, assuming such a path exists, will be better than any path including the parametric arc. That is, for
any value of the parameter above this sum, you will still get the same shortest path tree.

†In one dimension, we can ignore all parameter values above the sum of all constant weights (i.e. not param-
eters). There may be tighter bounds, and in some trivial cases, such as no constant weights, this is actually too
tight as it is.

171

...

n.After repeated iterations, end up with a reasonable approximation of boundaries at 1

and 3.

Figure 6.6: Example output of binary (first) implementation applied to Figure 6.3. Note that this agrees with the solution
given in Figure 6.4.

172

Figure 6.7: Example graph with two parameters. Note the separability.

For two dimensions (i.e. two parametric edges), we essentially repeat the one dimensional

process outlined above on a series of lines going through our region of interest. Since we are

working in two dimensions, we no longer have the guarantee that regions are constant beyond

the total weight of the non-parameterized edges. We provide an example in Figure 6.7 with pa-

rameters x and y. For this case, it is easiest to just pick arbitrarily large values, sayM , assuming

one of the boundaries isn’t y = x, and search along all lines between (0, 0), (0,M), (M, 0),

and (M,M). Then, picking a number of sample points n, e.g. n = 5, one draws sets of 5

lines, each set of lines drawn between a vertex and points along one of the opposite edges. An

example of this is shown in Figure 6.8. The intuition here is that we are trying to avoid sam-

pling a line perfectly over a boundary, although this may occur in some cases. Generically, our

sample lines will go through several regions to help ’detect’ as many boundaries as possible,

and this is one approach. The result of this two dimensional binary search is shown in Figure

173

6.9.

Figure 6.8: Lines for two parameter binary search, n = 5 sample lines, corresponding to Figure 6.7

Figure 6.9: Example output of binary (first) implementation applied to Figure 6.7.

Our second implementation* is a modified version of the algorithm described above and
*Link to implementation: https://github.com/jacleveland/joswig

174

https://github.com/jacleveland/joswig

in147. It works by generating a list of all paths possible in the graph, along with the total cu-

mulative weight along each path, as well as whether or not there are variable edges along that

path. For each path not on the tree being considered, it solves for the boundary between two

regions. One region corresponds to the tree with the original path. The other other region

corresponds to the tree with the new path. For example, consider Figure 6.4 which shows the

tree T0. Fix v4 and v2 and consider the two paths between them, one going through v3 with

weight x + 3, and one directly between v4 and v2 with weight 4. We know the boundary be-

tween the region for T0 and the region for T1 is exactly when x + 3 = 4, i.e. x = 1, since we

are fixing the other edges, namely the path going from v4 to v1 through v3. Lastly, we would

find the boundary between T1 and T2 by noting that the boundary between them is exactly

when x + 2 = 5, i.e. x = 3. For our example, in Figure 6.4, since there is only one parameter,

our boundaries are fixed values. The output of this implementation applied to the graph in

Figure 6.3 is shown in Figure 6.10, which shows that our boundaries between regions are at

x = 1 and x = 3. In two parameters, the boundaries between cells are lines. The dashed lines

between the regions in Figure 6.8 are such boundaries.

Figure 6.10: Example output of our Joswig (second) implementation applied to Figure 6.3. Note that this agrees with the
solution given in Figure 6.4.

175

More generally, for a graph with d-dimensional parameter space, these boundaries* are d−1

dimensional affine subspaces ofRd. Assuming separability, i.e. all of the variable edge weights

are represented by unique xi, we know that there will only be coefficients of±1 or 0 in front

of each parameter, along with a constant representing the shifting of the affine subspace.† In

essence, we are solving for this constant, and the sign of the coefficient of each variable, which

will depend on which path each variable appears on, if at all‡.

Figure 6.11: Waveform associated with the Verilog Tropical ALU implementation.

*Note that points on the boundary represent parameter values associated with multiple trees that are equally
optimal. One may convince themselves of this fact by observing that in Figure 6.4, when x = 1, both T0 and T1
are optimal because x+ 3 = 4when x = 1.

†Even if one didn’t have separability for the parametric graph, one could force separability by a relabeling
process where x on two different arcs would be replaced by y and z, and the process would be performed on this
more general graph.

‡It is important to note, however, that some of these inequalities will be superfluous, if for example you have
two parallel arcs (i.e. same source and sink) with the same exact variables, but the constants of one path add up
to a smaller weight than the other. This issue can be solved by pruning the graph to begin before performing the
computations, or alternatively, applying separability and treating the variables separately.

176

R0 = 0x00000000; //register file

R1 = 0x80000000; //initialization

R2 = 0xFFFFFFFF;

R3 = 0x7FFFFFFF;

R4 = 0x00000001;

R0 = R1 & R2;

R0 = R1 | R2;

R0 = min(R3,R4); //oplus

R0 = R3 + R4; //otimes

R0 = min(R1,R2);

Figure 6.12: High level representation of program being demonstrated in the waveform of Figure 6.11.

Verilog Implementation

In addition to working on Python implementations, great strides were also made in creating

our Verilog implementation* of a 32-bit tropical arithmetic logic unit (ALU). This tropical

ALU is capable of executing instructions for the⊕ and⊗ as well as the logical AND and OR

operations. The 32nd bit indicates the∞ of the tropical semiring, i.e.

32’b1xxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx.

The arithmetic operations here represent the usual operations as defined in §6.2.2. Note that

for⊗, overflowing results in finite values for simplicity, as demonstrated by the waveform in

Figure 6.11. An alternative is to have⊗ overflow to∞ since any value larger than 231 − 1

could be considered to be∞. As a compromise, future revisions could include an overflow

mode that selects between overflowing normally and overflowing to infinity.

*Verilog implementation available here: https://github.com/jacleveland/tropicalu.

177

https://github.com/jacleveland/tropicalu

6.2.4. Parameter space decompositions for weighted graphs

In this subsection, we discuss several natural mathematical extensions of the framework intro-

duced in147. First, we discuss what happens when one changes the problem under considera-

tion from the single source shortest path problem to other problems of interest for a weighted

graph. Second, we consider how the parameter space perspective allows us to characterize

some of these problems, even when they don’t yield tropical formulations. One upshot of this

subsection is the ability to define a principled notion of stability of solutions to these para-

metric problems. The results of this subsection are outside the purview of traditional tropical

geometry, though the perspective taken is heavily inspired by the tropical geometric approach

to parametric routing.

Tropical Graph Problems

To formally describe more general parametric problems on graphs, we introduce some termi-

nology:

Definition 6.2.1. LetG be a graph with n nodes V and k edgesE. LetE ′ ⊂ E be a subset

of edges of sizem ≤ k, and suppose that we assign to each e ∈ E ′ an affine function in the

real variable xe, and all other edges s ∈ E \ E ′ a constant weight. We call weighted graphs as

defined above parametric graphs. We refer toRm, wherem = |E ′|, as the parameter space of

G, and identify each x ∈ Rm with a fixed choice of parameter values onG.

For a fixed parametric graphGwithm ≤ k parametric edges, every point x in parameter

spaceRm corresponds to a different choice of weights forG.

Definition 6.2.2. A parametric problem P on a weighted graphGwithm parametric edges

is described by the following:

• A set of discrete objects called the solution set J ;

• An assignment h : Rm → P(J), whereP(J) is the power set of J .

178

Example 1. The parametric all-pairs shortest path problem on a weighted graphG = (V,E)

has as its solution the set of all paths U where:

• For each x, y ∈ V , U contains a unique path pxy from x to y;

• If pxy has a subpath from u tow, then puw is given by this subpath.

The assignment h : Rm → J maps each weight vector to the set(s)* of lowest weight paths in

J .

Example 2. The parameterized max-flow problem on a weighted graphGwith source vsrc

and sink vsk has as its solution set all graph cuts separating vsrc from vsk, i.e. the set of all min-

imal sets of edgesQ = {e1, e2, . . . , el} such that whenQ is removed fromG, vsrc and vsk are

in different connected components ofG. The assignment h : Rm → J maps each weight

vector to the minimal weight cut(s) in J .

Definition 6.2.3. LetG be a parameterized graph withm parameterized edges. Let P be a

problem onGwith a discrete solution set J . Let h : Rm → J be the assignment function

for P . For each α ∈ J , let Uα := h−1(α) be the region inRm assigned to α. We say that

UJ := {Uα | α ∈ J} be the decomposition ofRm induced by J .

Following through the definitions, one quickly sees that the decomposition ofRm induced

by the all-pairs shortest path problem on a graphGwithm parameterized edges is in fact the

same tropical hypersurface introduced in147. We observe that many natural parametric prob-

lems on graphs may also be phrased in terms of tropical equations, and hence will decompose

parameter space into cells given by a tropical hypersurface. We will term such problems as trop-

ical graph problems. We now give a (certainly non-exhaustive) list of tropical graph problems:

• Single source shortest path

• All-pairs shortest path

*Note that two paths pxy and sxy can be equivalent in terms of having optimal path length and allowing
equivalently optimal paths to branch off of them as well. Recall that in subsection 6.2.3, any point on the bound-
ary between two cells had at least two equivalent shortest path trees. Hence some weight vectors will map to
multiple equally optimal solutions.

179

• Minimum spanning tree

• Traveling salesman

• Max-flow

Knowing that a problem is a tropical graph problem immediately provides a lot of infor-

mation about the parameter space decomposition. This is due to the regularity of tropical

hypersurfaces: for instance, we are guaranteed that for any solution α ∈ J the region assigned

to α is a convex,m-dimensional set with piecewise linear boundary, i.e. convex polytopes. Fur-

thermore, we know almost all parameter vectors have a unique solution.*

This structure makes such decompositions of parameter space much easier to determine

with algorithms, using for instance the algorithm described in the previous subsections, or

with substantial modification.

We are also guaranteed that if we take natural “combinations” of such problems, the result-

ing parameter space decomposition is once again tropical. In particular, consider the natu-

ral definition of a product of problems, i.e. a problem with solution set given by a Cartesian

product of solution sets for other problems. As natural examples of problems that can be

phrased as products of simpler problems, note that shortest path spanning tree may be written

as a product of instances of shortest path with fixed endpoints, and that all pairs shortest path

may in turn be written as a product of instances of shortest path spanning tree. The follow-

ing lemma is trivial from a tropical geometry perspective, but is worth mentioning in our new

language:

Lemma 6. Suppose that PI , PJ are problems with assignments given by tropical polynomials

hI , hJ : Rm → T. Then the assignment for PI × PJ is given by the tropical polynomial

hI
⊗

hJ .

Though one may always define such a product regardless of whether the problems are trop-

ical, it is comforting to know that tropical problems are closed under this operation.

*Note that parameter vectors on the boundary between two cells will correspond to two or more different
solutions in J .

180

More General Problems

From the above discussion, one might be inclined to think that all natural parameterized

graph optimization problems are tropical. This is not the case, and a prominent example of

problems that do not have this property arise from various centrality measures, which are in-

troduced in Section 6.1.2.

Example 3. A parameterized centrality problem on a weighted graphG has as its solution set

all orderings of vertices, where we allow for orderings where two or more vertices to “tie”. The

assignment h : Rm → J maps a parameter vectorw to the ordering on vertices induced by a

chosen centrality measure computed onGwith weights given byw.

Commonly used centrality measures include eigenvector, Katz and betweenness centrality,

see29. For a given centrality problem with assignment h, we may consider the decomposition

induced by orderings on the vertex set. However, we find that the cells in this decomposition

are in general no longer convex with piecewise linear boundaries.

Example 4. Consider parameterized eigenvector centrality on a parameterized graphG. Sup-

pose thatG hasm parameterized edges, and consider the parameterized adjacency matrix

AG(w), which is a function ofw ∈ Rm. Then we see that both the maximum eigenvalue

and the corresponding maximal eigenvector

AG(w)v = λmax(w)v

depends onw. Notice that by definition of the adjacency matrix, the ith entry of the eigen-

vector vi may be identified with the ith vertex ofG. The eigenvector centrality of a graph is

defined to be the ordering imposed on the vertices by the “score function” given by the entries

of v, which in the parametric regime is a function of our parameter vector.

We see that solution regions are defined by the (in)equalities of the form

∑
j

aij(w)vi = λmax(w)vi

181

vi(w) ≥ vk(w), i ̸= k.

These (in)equalities almost look like the defining (in)equalities of a semi-algebraic set, and

indeed if λmax were constant this would be the case. However, λmax depends on the paramet-

ric characteristic polynomial of the matrixAG(w) and hence is (generically) not a polynomial.

Example 5. Despite the difficulties presented by the general case, for certain graph architec-

tures one is able to compute the corresponding eigenvector centrality decomposition without

too much difficulty. For instance, consider the star graph with n edges, i.e. the graph with

n + 1 vertices such that there is an edge from the first vertex to all other vertices, and no other

vertices are connected by edges. The parameter space of the weight space isRn. The principal

eigenvector is given by (1, w1

||w||2 ,
w2

||w||2 , . . . ,
wn

||w||2)where ||w||2 =
√
w2

1 + w2
2 . . .+ w2

n. Thus

we see that every possible permutation σ ∈ Sn+1 that fixes 1 is a possible solution for this

problem, as the ranking is ordered by the ordering on the weights, apart from vertex 1 which

is always central. The set of these are in bijection with the symmetric group Sn, and hence we

define the set of regions

Uσ = {(w1, w2, . . . , wn) ∈ Rn |wσ(i) ≥ wσ(j), σ ∈ Sn},

which define the regions of parameter space for which σ is the ordering induced by the eigen-

vector.

The situation for Katz centrality is similarly complicated. It is interesting to note that Katz

centrality depends on a parameter such that when one takes an appropriate limit, eigenvector

centrality is recovered, and hence we expect their respective parameter space decompositions

to converge as well. In contrast, the betweenness centrality decomposition yields a description

that, while not tropical, can be constructed using convex polytopal regions:

Theorem 7 (Betweenness Centrality is a Polytope Complex). Let β∗ be the assignment in-

duced by betweenness centrality. Then for all α ∈ J the region h−1(α) is a union of convex

polytopal regions, glued along (potentially empty) faces. In other words, h−1(α) is a polytope

complex.

182

Proof. Wemay record the betweenness ofN nodes as a vector in β(w) ∈ RN , which we

write this way to emphasize thew ∈ Rm dependence. From this, we obtain a solution (for

parameterw) to the betweenness centrality problem by considering the ordering of entries of

β(w), which we have denoted β∗(w).

Consider the betweenness of a vertex v ∈ V , which we denote β(w)v. Recall that this is

given by the formula ∑
s ̸=v ̸=t

σst(v)

σst
.

The key observation is that both σst and σst(v) are determined solutions to the all-pairs-

shortest path problem, as both quantities are given by the size of subsets of the set of n(n−1)
2

optimal paths for a given weight vector. Hence, we see if β(w)v ≥ β(w)q for v, q ∈ V ,

then this inequality holds for all vectorsw in the same region asw in the all-pairs shortest path

problem. Thus, β∗(w) : Rm → J defines a face-wise constant function on the decomposi-

tion induced onRm by the all-pairs shortest path problem onG. There may be multiple cells

of the all-pairs shortest path problem that induce the same ordering α, hence (β∗)−1(α)may

be a union of polytopes, which are necessarily glued along (possibly empty) faces as they are

chosen from a decomposition where all regions have this property.

Graph Symmetries and Parameter Space Decompositions

A challenge with constructing or even sampling parameter space decompositions is that for

any graph of reasonable size one is quickly confronted with a high dimensional problem.

However, if the graph topology in question has nontrivial automorphisms, we may be able

to leverage the additional symmetry to simplify the decomposition, provided that the particu-

lar problem in question respects these symmetries. For simplicity, we will assume that all edges

ofG are parametric.

Definition 6.2.4. LetG = (V,E) be a graph. A graph automorphism ψ is a bijection from

G to itself such that if v andw are adjacent inG then ψ(v) and ψ(w) are also adjacent. The

automorphisms of a graph form a group, which we denoteAut(G).

183

Lemma 8. LetG be a graph withm edges, all of which are parameteric. Then for all suchG

(outside of 3 cases), ψ ∈ Aut(G) induces an automorphism on parameter spaceRm, where

the automorphism is given by permuting the coordinates ofRm.

Proof. For all graphs (excluding 3 cases that are outlined in Corollary 3.3 of243), the vertex

automorphism group of a graph is isomorphic to the edge automorphism group of the graph

(i.e. automorphisms of its line graph). Edge automorphisms are bijections from the edge set to

itself satisfying certain conditions, and hence they induce bijections on the edge variables.

Proposition 9. Let P be a problem in the following set of parametric graph problems: End-to-

end shortest path, shortest path tree, traveling salesman tour, all pairs shortest path, between-

ness centrality, Katz centrality, eigenvector centrality. Let h : Rm → J be the assignment

for P . Then there is an action ofAut(G) on J that commutes with the action ofAut(G) on

Rm, i.e. such that ψ(h−1(x)) = h−1(ψ(x)) for all ψ ∈ Aut(G).

Proof. Wewill prove the results for all-pairs shortest path and for eigenvector centrality and

comment that the other cases follow similarly.

Suppose that x is a solution to the end-to-end shortest path problem between vertex i and

vertex j with respect to parameter vectorw = (w1, w2, . . . , wm). Then x is a path pij =

vi1vi2 . . . vil. ψ ∈ Aut(G) acts on paths inG, by mapping pij to ψ(pij), where

ψ(pij) =ψ(vi1)ψ(vi2) . . . ψ(vil)

=vψ(i1)vψ(i2) . . . vψ(il),

where we have written the action in a way to emphasize the fact that graph automorphisms

can be viewed as certain relabelings of the vertex set. We denote the induced action on labels as

ψ. It is clear that pij is optimal forw iff ψpij is optimal for (wψ(1), wψ(2), . . . , wψ(n)), which

shows that h−1(ψ(x)) = ψ(h−1(x)) and proves the result for end-to-end shortest path. Now

let x be a solution to all-pairs shortest path. Hence x is a union paths pij for each i, j ∈ V ,

184

and by defining the action of ψ to be the diagonal action on the union of these paths, we see

that the same result holds for all-pairs shortest path.

For eigenvector centrality, note that the action of ψ ∈ Aut(G) onG permutes the columns

and rows of the adjacency matrixA ofG. Hence we see ifAx = λx then ψ(Ax′) = λx′,

where x′ is the vector with x′i = xψ(i). Thus we may define an induced action ψ on eigenvec-

tors ofA, and see that this commutes with the action of ψ onG.

Corollary 1. Let v ∈ V , and let h(w) = σw denote the solution to any of the parameterized

centrality problems in the above proposition, i.e. σw is the induced ordering from V to [n].

Then if σw(v) is constant as a function ofw, then v is fixed by all automorphisms ofG.

An example demonstrating the above corollary is the central vertex in the n-star graph. A

similar result holds for solutions to the various routing problems in the Proposition 3.13, and

more sophisticated statements relating the action ofAut(G) to the symmetries of parame-

ter space exist. In theory, incorporating these symmetries into algorithms such as the one de-

scribed in147 should result in faster computations, as it will only be necessary to compute a

subspace of the total decomposition, and then use the action ofAut(G) on parameter space

to reconstruct the rest.

6.2.5. Stability of solution sets

Recall that h : Rm → J . Considering the geometry of h−1(x)* gives rise to new perspec-

tives for parametric problems on graphs. In some sense, the size and shape of the set h−1(x)

corresponding to a solution x ∈ J should reflect how “stable” to perturbation this optimal

solution is. Consider for instance a convex solution set h−1(x) = U with large volume and

“small” boundary measure. Then one can reasonably assume that small perturbations of most

vectors in U will stay inside U . In contrast, if U has small volume, or has large volume but

with a comparably large boundary (e.g. if U looks like a tree) then we lose such guarantees.

*Called the fiber of h at x.

185

Tomake these ideas precise, we will need to appeal to the language ofmeasures. Informally,

a measure is a function that assigns a mass to a set. One of their primary applications is in

probability theory, where a (normalized) measure on a space of possible events provides a way

of assigning a probability to a subset of events occurring. With this in mind, consider the fol-

lowing definitions:

Definition 6.2.5. Let µ be a measure on a measurable space, and let f : X → Y be a measur-

able map. The pushforward measure f∗(µ) is defined by setting f∗µ(A) = µ(f−1(A)) for all

measurableA ⊂ Y .

Definition 6.2.6. Let µ be a compactly supported measure onRm, letG be a graph withm

parameterized edges. Let h : Rm → J be the assignment for a problem P with solution set J .

Then we say h∗µ is the measured induced by h relative µ.

Before proceeding, we explain two natural ways one may obtain measures induced on pa-

rameter space in a networking setting. For concreteness, suppose our system of interest is

modeled by n agents arranged on a graph with fixed topology, but possibly changing edge

weights, which may represent for instance distance or available channel capacity.

Example 6. Suppose that our edge weights are subject to uncertainty, due to environmental

factors or to account for the possibility transmission errors. This can be modeled by assigning

a probability measure µi to the edge i, and letting µ =
∏m

i=1 µi. For instance, in the standard

white noise model for communication channels, each µi is a one-dimensional Gaussian distri-

bution, and µ is thus anm-dimensional Gaussian. µ induces a measure on each cell h−1(x) in

our decomposition, corresponding to how often x is the optimal solution given the presence

of uncertainty modeled by µ.

Example 7. Even in a completely deterministic system, time-evolving edge weights induce a

measure on parameter space. For instance, suppose that our edge weights evolve periodically

in time. We may view then view the evolution of this system as a closed loopC : R → Rm

with period T inRm. This defines a measure µC on our solution set J , such that for any x ∈

186

J we have

µC(h
−1(x)) =

∫
h−1(x)

C(t) dt,

i.e. the measure induced by the amount of time our system spends in the region h−1(x).

We now offer two different definitions of stability for a solution set h−1(x), relative to an

induced measure h∗µ.

Definition 6.2.7. Let h : Rm → J be a parameterized problem onG, and let µ be a com-

pactly supported measure onRm. Then for x, y ∈ J , we say that x is more stable than y if

h∗µ(x) ≥ h∗µ(y).We call x∗ = argmaxx∈J{h∗(µ)(x)} the maximally stable solution.

Definition 6.2.8. Let h : Rm → J be a parameterized problem onG, and let µ be a com-

pactly supported measure onRm. For each x ∈ J and ϵ > 0, letWϵ(x) be the subset of

h−1(x) of all y such thatBϵ(y) ⊂ h−1(x). Then for x, y ∈ J , we say that x is more ϵ-stable

than y if µ(Wϵ(x)) ≥ µ(Wϵ(y)). x∗ = argmaxx∈J{Wϵ(x)} is the maximally ϵ-stable solu-

tion.

Stability describes the optimality of a solution up to uncertainty captured by the probabil-

ity distribution µ. ϵ-stability also captures this, but additionally accounts for the possibility of

a small perturbation of the inputs. This more closely mimics the stability described in the be-

ginning of this subsection, in that sets with relatively small boundary measure are necessarily

more stable. Notice that as ϵ→ 0, ϵ-stability recovers stability.

Even for tropical graph problems, determining stability and ϵ-stability is computationally

nontrivial. Exact solutions to this problem in full generality is at least as difficult as comput-

ing the volume of an n-dimensional polytope, which is known to be computationally chal-

lenging36. However, there are known to be more efficient approximation schemes (e.g.79),

and it would be interesting to see how such schemes perform on computing stability or ϵ-

stability from systems arising from data.

187

6.2.6. Conclusion and Future Work

Tropical geometry offers a new potential avenue for approaching delay tolerant networking.

The main potential comes from the fact that tropical geometry is a natural setting for study-

ing optimization problems, many of which can be expressed tropically146. As demonstrated

above, some normally intractable problems become feasible in the tropical setting. Moreover,

tropical approaches have been verified to work for scheduling trains285 which are similar to

delay tolerant networks in many ways. One similarity is that trains may have to wait in certain

stations, similar to how some bundles have to be buffered at certain nodes. Another similarity

is that a train may travel along a path without end to end connectivity, similar to the nature of

delay tolerant networks.

The algorithms and framework detailed in this section extend the utility from trains and

traditional linear optimization towards the temporal setting of DTNs, and can be used to

analyze current and future networks. For example, given a network metric, one may ask for

the optimal way to add another communication node.

Because tropical geometry lends itself to computation, including by FPGA, local algo-

rithms that use a tropical-geometric approach to decision-making are feasible, offering a direct

path to implementation.

We have also shown how the perspective of studying a parametric problem on a graph

through the geometry of its parameter space bears fruit even outside the strict tropical frame-

work. To our knowledge this perspective is underdeveloped in the temporal graph literature.

We end with suggestions for future directions:

Future Work

• Solving temporal networking problems could be made possible through the application

of parametric graph optimization. One way to demonstrate this would be to simulate

a space network using orbital analysis software, and then attempt to make routing deci-

sions based on the state of the network over time.

188

• Determine stability of an optimal solution for mild perturbations of the associated

graph in parameter space. Howmuch error are we allowed to have in a given network

to still meet a threshold quality of service?

• Study the case when edge weights are unpredictable, and instead when edge stability

follows a probability distribution with respect to time. What modifications are needed

to our approach for this case?

• Study what factors (e.g. bit rate, latency, network demand) are appropriate for analysis

as parameters in the context of our approach.

• Finish off Verilog Tropical ALU by adding signed arithmetic, logical and arithmetic

shifts, pipeline, flow control (branches, jumps), branch prediction, co-processors, and

cache. Implement companion Python matrix multiplication programs for driving an

FPGAwith several instances of a Tropical ALU (CPU) onboard.

• Investigate the behavior along boundaries of cells in the single source shortest path case.

Define a (co)sheaf over the cells and their boundaries that maps trees over these cells.

• Extend the Joswig implementation to higher parameter dimensions, arbitrary graphs,

and the ability to solve for trees in time intervals when the parameters are given by arbi-

trary continuous functions in parameter space.

189

6.3. Final Notes

The study of space networking is an exciting and crucial field that has captivated the imagi-

nation of people across the globe*. Over the past century, we have made incredible strides in

exploring the vast and mysterious expanse of space. Developing space networks will be instru-

mental in unlocking the secrets of the cosmos and achieving our goals of exploring the final

frontier. One of the critical components of space networking is long-distance communication,

which is vital for communicating with the International Space Station and probes that travel

beyond our Solar System. Dynamic networks play a significant role in this process, providing

a framework for studying communication in this unique and valuable environment.

This chapter has explored the structure and nature of space networks, including lunar net-

works and routing issues in broader settings. It has provided a comprehensive theoretical

framework for studying dynamic networks in the context of space networking and showcased

examples, data, and other empirical results of their effectiveness. Moreover, this chapter high-

lights the critical role that mathematical and computational tools play in space networking.

These tools help researchers better understand the dynamics of space networks and design

new, innovative solutions to the challenges that arise.

The potential benefits of space networking are vast and far-reaching, from developing new

technologies and unlocking the mysteries of the universe to advancing our understanding of

the origins of life. As we continue to explore the cosmos, the development of space networks

will be instrumental in achieving our goals and taking humanity to new heights.

The study of space networking is essential and fascinating; it has the potential to revolu-

tionize our understanding of the universe. By leveraging the power of dynamic networks and

cutting-edge mathematical and computational tools, researchers can continue to advance our

understanding of space communication and design the next generation of space networks.

With these tools at our disposal, the possibilities for space exploration are truly limitless.

*This section was partly written by ChatGPT218, inspired by our study in machine learning in Section 5.2.

190

Part III

Looking Forward

191

An equation has no meaning for me unless it expresses a

thought of God.

Srinivasa Ramanujan Aiyangar

7
Conclusion

N
etworks are all around us, all the time. In this dissertation, we have traversed the

labyrinthine landscape of dynamic networks, uncovering part of their fascinating

nature. Systems of dynamic networks are non-local, yet analyzable; natural, yet abstract; and

computationally tractable, yet hard*. As we stand on the precipice of this intellectual journey,

we are afforded the opportunity to reflect upon the profound implications of our findings

and the potential they hold for reshaping our understanding of these remarkable systems.

*Though, they are sometimes too hard and sometimes evenNP-hard.

192

7.1. Overview of Results

Dynamic networks, as we have demonstrated, transcend the boundaries of traditional spa-

tial and temporal constraints. Their non-locality lends a certain elegance to the underlying

mechanisms of dynamic networks, allowing them to adapt and evolve in response to the ever-

changing environments they inhabit. Their modeling power renders them as natural phe-

nomena that seamlessly integrate with the very fabric of our world, reflecting the inherent

dynamism and interconnectedness that define the complex tapestry of life.

Our exploration of these networks began in earnest with Chapter 4, where we delved into

the realm of viral models of spread. Through our examination of these models, we gained in-

valuable insights into the intricate dynamics governing the proliferation of ideas, diseases, and

information. The lessons we gleaned from these models hold the potential to inform public

health strategies, foster the dissemination of beneficial innovations, and catalyze the advance-

ment of social and technological progress.

In this chapter, we also explored the various factors influencing the spread of contagions

in both physical and virtual realms. By evaluating the role of network topology, information

diffusion, and human behavior, we provided a comprehensive understanding of the mecha-

nisms that drive the spread of viral phenomena. This understanding, in turn, has implications

for the design of effective intervention strategies, targeted at reducing the negative impact of

undesirable contagions while promoting the propagation of ideas and technologies that can

foster global prosperity.

In Chapter 5, we ventured forth into the world of fast-moving networks, examining their

unique properties and the powerful implications they hold for the future of communication,

logistics, and rapidly-evolving systems. While we focussed on the analysis of sports-based net-

works, our techniques have promise to generalize beyond their current application areas. As

our society continues to evolve at an unprecedented pace, these fast-moving networks will play

a pivotal role in fostering rapid adaptation, enhancing global connectivity, and shaping the

trajectory of human progress.

193

From the fluid formations of teams to the rapid transitions in basketball, we explored how

the principles of dynamic networks can be applied to enhance our understanding of the strate-

gies and tactics employed by athletes and coaches. By examining the role of network topology,

implicit information diffusion, and individual and team behaviors, we provided a comprehen-

sive understanding of the mechanisms that drive success and failure in the context of sports.

This understanding, in turn, has implications for the development of innovative training

methodologies, performance analysis tools, and game strategies that can elevate the athletic

performance of individuals and teams alike. We also provided a framework for leveraging off-

the-shelf neural network architectures through the appropriate featurization, which results in

quick development time and optimized compute.

Moreover, our exploration of dynamic networks in sports served as a powerful testament to

the ubiquity and versatility of these systems, demonstrating their ability to provide valuable

insights across a diverse range of domains. The principles gleaned from our investigation of

fast-moving networks in sports can be extended to other areas of human endeavor, offering a

rich and fertile ground for future research and applications.

Finally, in Chapter 6, we took our inquiry to the stars, collaborating withNASA to investi-

gate the uncharted territory of space networks. As humanity embarks upon the next chapter

of its cosmic odyssey, the knowledge we have garnered about the behavior and properties of

these networks will be crucial to our success in exploring and harnessing the boundless poten-

tial of the universe that lies before us.

The study of dynamic networks has opened a gateway to a deeper understanding of the

complex, interconnected systems that underpin our world. As we gaze into the future, we are

reminded that our collective journey has only just begun, and that the continued exploration

of dynamic networks holds the promise of untold discoveries and unprecedented advance-

ments. It is our hope that this dissertation serves as a beacon, illuminating the path forward

and inspiring future generations of scholars to continue unraveling the enigmatic and won-

drous nature of dynamic networks, ultimately unlocking the secrets that lie at the heart of the

cosmos itself.

194

7.2. The Bridges of Kaliningrad

The city of Königsberg is now Kaliningrad, located between Lithuania and Poland. It is a

peculiar city, as it is part of Russia, but surrounded by non-Russian territory. Königsberg

suffered extensive bombing duringWorldWar II, and all seven bridges were destroyed by the

Allies. There are now five rebuilt bridges and, with this new topology, it is now possible to

find an Euler path266. The practical relevance of this solution is unclear, but the principles of

graph theory continue to function after centuries, world wars, and the rise and fall of nations.

It is the inherent marvel of mathematics that our theorems continue to function beautifully

long after their discoverers have passed.

195

We can only see a short distance ahead, but we can see

plenty there that needs to be done.

AlanMathison Turing

8
Future Directions

H
opefully, your interest has been captivated in dynamic graphs. Part of the fascination

with these structures is their connections to other areas of study, as well their natural

occurrence in a wide range of important applications. In this chapter, we will take a brief tour

through some (but far from all) potential future areas of studies. Some of the sections cover

unpublished and active areas of my or my collaborators’ work, while other sections focus on

open questions that would be interesting for the next generation of researchers and students

to study.

196

8.1. Theoretical Considerations

8.1.1. Open Questions

There are a wide range of open theoretical questions that have vexed me throughout my re-

search in this area. One particular issue is the lack of necessary conditions for certain impor-

tant dynamic connectivity properties of networks.

Linking Static and Dynamic Properties

Wewould like to link static and dynamic notions of connectivity. So far, the best results we

have are Propositions 2, 3, and 4. These Propositions provide only sufficient conditions for

dynamic connectivity, which means that we must either find the necessary conditions or

we need to provide a laundry list of sufficient ones. From practical experience, it seems un-

likely that we will be able to find clear necessary conditions that generally work, but we may be

able to restrict ourselves to particular cases or provide results in expectation or probability for

stochastic cases. It would also be nice to demonstrate a much more sophisticated link between

static graph properties and their dynamic counterparts.

Therefore, we are working towards a theorem that would connect these properties. One

observation we have is that it seems as though periodic, repeating structures can be hurtful.

We would like to show, then, the following conjecture or some variation thereof:

Conjecture 1 (Dynamic Connectivity from Local Bounding). There exists anΩ(n) such that

a graph sequence that is non-stranding, connected, and non-excessively repeating, with at least

Ω(n)× n2 edges is δ-connected.

What does this conjecture say? First, it requires several properties of the sequence:

1. Non-stranding: so that the sequence of graphs does not become trivially disconnected

2. Connected: so that there always exists a path from one vertex to another

197

3. Non-excessively repeating: an edgeset cannot be repeated in the sequence until all other

possible edgesets have occurred; this guarantees good “mixing” of the sequence

4. At leastΩ(n) edges: this guarantees that the graph has enough possible paths to fight

against pathological behavior.

Notably, these properties are all properties of the individual graphs, with the only global prop-

erty being “non-excessively repeating.” Therefore, this type of conjecture would connect the

static graph properties to a dynamic one. To prove this conjecture, there are two foreseeable

steps: first, it must be shown that there is non-trivial behavior, i.e. that if there are only n

edges, we can always find a disconnected sequence and that if there are n2 edges, we are al-

ways connected. Second, it must be shown that a threshold exists, in that if we know that this

property holds with τ(n) edges, that it holds with σ(n) edges, where σ(n) > τ(n).

In the stochastic case, we would like prove something like Conjecture 2.

Conjecture 2 (Bound in Stochastic Setting). We fix T to be our discrete, infinite time-indexing

set, e.g.N, and V as some (finite) vertex set. Let µti be a probability measure indexed over V ×

T

µti : P(V)→ [0, 1]

whereP(V) is the powerset of V and we assume the typical axioms of a probability measure.

This probability measure indicates the likelihood of a particular set of outgoing edges from

edge i at time. In other words, we can define a stochastic graph sequenceGt = (V,Et)with

the probability of a particular edge as

P((u, v) ∈ Et) =
∑

S∈P(V):v∈S

µtu(S)

We place the additional restriction that µ(∅) ̸= 1.

We can now state our conjecture: given a measure such that the graph is almost surely con-

nected except at finite timesteps and the existence of each edge is independent (and somewhat

equiprobable) at each timestep, then our dynamic graph is almost surely dynamically con-

198

nected.

Notably, Conjecture 2 certainly does not provide necessary conditions, only sufficient ones.

The ultimate theorem would be to prove a theorem that provides both sufficient and neces-

sary conditions on a measure for almost sure dynamic connectivity. Interestingly, equiprob-

ability is not on its own enough to guarantee dynamic connectivity, but independence is al-

most certainly too strong of a condition. Almost sure connectivity is also not necessary. How-

ever, we need some way to force edges to “shift” over time in a sufficiently uncorrelated man-

ner that our system cannot be “stuck” in some odd state (e.g. the alternating sequence seen in

Figure 1.3). With dynamic networks, there are many pitfalls, since all dynamic networks are

inherently directed (with respect to time).

Summary Graphs

The notion of graph summarization is introduced in Section 6.1.2, but very little is known

about summary graphs. In this work, we have presented a few ideas about certain particular

summarization techniques, but we do not have a general operating theoretical framework to

construct or analyze summarization and its further connections to linear algebra or analysis.

The general idea of graph summarization has perhaps too little structure to generate meaning-

fully interesting results. Given a particular summary function f , there are many questions to

ask:

1. How efficiently can we compute a summary?

2. Can we do summary in an online manner, i.e. as update our summary as we process

new graphs?

3. What are the intrinsic invariants that are preserved by a summary function?

4. How sensitive is a summary function to the input sequence?

5. What is the physical or natural interpretation of a summary given the underlying graph

system?

199

Even solving some of these problems with particular classes of summary functions would

provide insight into this potentially rich area of study.

Hypergraphs

Our systems are intricately tied to hypergraphs and we did not provide a treatment of these ab-

stract structures (essentially set systems) in this dissertation. However, there are a wide range

of open questions about hypergraphs that provide insight into systems of dynamic graphs.

For our purposes, we can define a hypergraph as follows:

Definition 8.1.1 (Finite Hypergraph). Let V be some finite vertex set.

A hypergraphH is a tupleH = (V,E) such thatE ⊆ P(V), whereP(V) is the power-

set of V .

From here, we can equip our hypergraph with attributes to create the attributed hyper-

graph. This structure, as seen in Definition 8.1.2, provides a more general way of reasoning

about temporal structures. We have a very general framework of what constitute vertices,

edges, and attributes; perhaps unsurprisingly, it is hard to something in general about these

structures. However, there are mainly particular constructions, like line graphs, that are use-

ful175.

Definition 8.1.2 (Attributed Hypergraph). An attributed hypergraph is a system

H = (V,E,X, ϕ, Y, ϵ)

where (V,E) is a hypergraph,X,Y are the vertex attribute and edge attribute sets respectively,

and ϕ : V → X, ϵ : E → Y are attribute functions.

The next major area of research in hypergraphs within the context of dynamic networks

would be to construct a consistent mechanism for classifying and characterizing the differ-

ent types of dynamic structures. As seen in Section 6.1.2, there are many types of dynamic

200

networks. Hypergraphs may be a useful mathematical structure to unify the different charac-

terization of dynamic networks113.

8.1.2. Graph Renormalization

As in other dynamic systems, one interesting strategy of clustering for dynamic networks

is through renormalization. Stemming from a sequence of work47,48,49, I implemented the

renormalization algorithm in49 to ascertain its clustering capability. While it is not a mature

practical technique, the results of clustering a dynamic graph are interesting.

201

Figure 8.1: A simple graph sequence parsed via renormalization.

We can see in Figure 8.1 that renormalization produces a tree (or graph) of graphs, where

each node is itself a filtered version of a parent graph. This technique allows us to see impor-

202

tant temporal changes like a phylogenetic tree: the substantial changes are grouped together.

Figure 8.2: The alternating graph sequence with eight nodes (analogous to the graph in Figure 1.3)
parsed with renormalization.

The alternating graph produces the renormalization in Figure 8.2, which nicely extracts

the periodicity of this graph. In all, this technique may be a way to achieve a coherent and

stable clustering of dynamic networks, which would fit into a larger scope of research into

spatiotemporal clustering techniques.

One particular technique of interest is spatiotemporal k-means75, which may have a natural

extension to dynamic networks. In particular, this technique can cluster spatiotemporal data,

but it may have promise for data with an underlying dynamic network structure or where the

underlying data itself is a set of dynamic networks.

8.2. Connections to Related Disciplines

8.2.1. Connections to Applied Topology

Spatiotemporal data is fundamental to applied topology, especially with the Topological Data

Analysis (TDA) literature81. Much work has been done to create both theoretically sound

203

and practically useful algorithms in analyzing, clustering, parsing, and understanding spa-

tiotemporal data. At its core, TDA techniques uncover the homologies of a well-chosen

simplicial complex, but there is much ingenuity in the particular implementations. Certain

constructions produce triangulations that shift over time (which are inherently dynamic net-

works) and underpin the techniques in Section 5.1. However, there are many opportunities

for further connections to current developments in TDA.

While each is its own exciting research area, the key thematic areas of interest for dynamic

networks within TDA are multiparameter persistence, sliding window embeddings, and tra-

jectory analysis. Additionally, these techniques also provide featurizations for downstream

technique like machine learning202.

8.2.2. Connections to Machine Learning

While we demonstrated applications of machine learning to dynamic networks in Section 5.2,

we have much work to do in this area. Indeed, graph neural networks are an important class

of machine learning models, but are not fully studied, especially for spatiotemporal networks.

There is no general featurization system of dynamic networks and even recent approaches are

ad hoc.

The next step in this area of research would be to focus on the creation of large and general

embedding models for graphs, just as exist in natural language processing (NLP) and computer

vision (CV) as disciplines. Indeed, we could imagine some generic and large model that can

extract relevant features within a dynamic network system. From there, we could apply this

large network to generate embeddings for some data that could then be used in some fine-

tuned, zero-shot, or few-shot downstreammodel.

One approach that we do not explore here is reinforcement learning (RL). It would be in-

teresting to have a study on a dynamical system defined over dynamic networks and to solve

some optimization problem within this context. Indeed, RL is a general approach that can

be applied to both NLP and CV problems, but its application to dynamic networks may be

204

able to quickly resolve difficult optimization problems over spatiotemporal networks. One

particular area of application would be in network design: the objective would be to design a

dynamic network that drives some communication or signaling network.

8.3. Application Areas of Interest

There are a wide variety of applications of interest: societally interesting or otherwise popular

areas of study that could benefit from their contextualization in dynamic networks. While

this dissertation is mute on some of these subjects, there are many areas worth of exploration

that could be of interest. Some of these areas have been studied in the course of producing

this work, but are not yet explicitly represented.

8.3.1. Applications to Biology

One application area of interest is in embryology. As a mammalian embryo develops, cells split

and shift. In particular, we can induce a dynamic network where each cell is a node and, when

a cell splits, we generate two new nodes. Then, we can create a heterogenuous set of edges that

capture

1. If two cells are physically adjacent or touching

2. Any chemical signals sent from one cell to another

3. The ancestral information from a parent cell to its descendants

A snapshot of this system can be seen in Figure 8.3. Indeed, this setting is quite difficult as

there are a variable number of nodes and there are three types of networks. However, this sys-

tem is usually small and presents a natural example of a dynamic network with heterogenuous

data across edges. It is a fascinating application with potentially rich mathematics behind it.

205

Figure 8.3: A snapshot of a mouse embryo in development. It displays a variety of cells in color and their estimated geom‐
etry. Although difficult to discern from this image, it is possible to tell which cells physically adjoin each other and which
cells may have inter‐cell signaling. Furthermore, it is possible to track cells across time and, as they split, retain ancestry
information.

8.3.2. Applications to Opinion Dynamics

Opinion dynamics260 is a large and ever-growing field in network analysis122,96,200 and math-

ematics51,247. The work in Section 4.1 fits into this literature. One of the key contributions

is that it explicitly models a dynamic network, as opposed to dynamics that sit atop a static

network. Currently, it is relatively difficult to provide a full mathematical analysis of the dy-

namics induced by a dynamic network system. If we could develop techniques to analyze a

large class of these systems with more general tools, this type of framework would be a major

contribution to the field of opinion dynamics.

206

8.3.3. Applications to Transit Networks

One of the most interesting types of dynamic network is the transit network. TheGeneral

Transit Feed Specification (GTFS) is a system for reporting consistent transit data and is used

by more than 1 800 transit agencies*. Indeed, this system is a powerful tool for a wide range of

engineering applications, e.g. automated transit-based directions.

Figure 8.4: A snapshot of the subway system in New York City. Each line represents a subway line and the colors with
varying intensity display the congestion across these pathways.

Figure 8.4 gives an example of this data for New York City. Using this type of data, we can

develop routing techniques that handle dynamic transit networks. In particular, the dynamics

of this network come from:

• Different transit frequencies at different times of the day, different days of the week,

and different parts of the year.

• Variable transit frequencies based on traffic and congestion.

*See: https://gtfs.org/about/

207

https://gtfs.org/about/

• Closures, exceptional cases, delays, and other practical changes in network frequency.

• Any route changes, updates, or modifications.

While this network may not evolve as rapidly as those seen in Chapter 5, transit networks are

still an example of a dynamic network. In particular, transit networks tend to exhibit periodic

and quasi-periodic behavior that are certainly an interesting property that arises naturally in

this context. Moreover, transit networks have ample data, which may make them tractable to

voluminous experimentation and machine learning.

208

I visualize a time when we will be to robots what dogs are

to humans, and I’m rooting for the machines.

Claude Elwood Shannon

A
Code

F
ormal language theory has a distinguished legacy at Princeton University, including

contributions from Gödel, Church, and Turing. In contemporary applied mathe-

matics, beyond the written word of proofs, the pre-eminent formal language is code. Much

of the content of this dissertation has been generated with code; we would like to represent

that work here. In this Appendix, we provide insight into both the function and form of our

engineering efforts, as well as links to repositories where all of the code can be found. It would

be unhelpful to replicate every line of code in the text of this document, so we instead take

this opportunity to demonstrate some concept, idea, or design pattern within each package

to illustrate how our code is generally structured. The full code is available within the linked

repositories.

209

As a general matter, we try to maintain best practices for managing software-based projects.

We use source control (git), Github, automated documentation, testing, and static analysis

tools (e.g. linters). With the advent of sophisticated language models, we also heavily relied

on GPT-4218 and Github Copilot101 for code-writing assistance. (In fact, GPT-4wrote the Bib-

TeX for citing itself!) Using these tools, we are able to maintain consistent, relatively readable

codebases that can be shared and maintained beyond the scope of the original projects.

We also use compute power from a variety of sources. Some of the simulations in this work

are performed on computational resources managed and supported by Princeton Research

Computing, a consortium of groups including the Princeton Institute for Computational

Science and Engineering (PICSciE) and the Office of Information Technology’s High Perfor-

mance Computing Center and Visualization Laboratory at Princeton University. Addition-

ally, we leverage Microsoft Azure and Google Cloud Compute, in addition to local comput-

ing resources, for our computing needs.

Note: in the following code snippets, a hyphen - appears as a tilde ~ for readability.

210

A.1. Viral Networks

A.1.1. fb-paper

See: https://github.com/DbCrWk/fb-paper

We have produced two packages for analyzing the spread of viral information. The first

contains the figures and original paper seen in Section 4.1.

A.1.2. trasir

See: https://github.com/DbCrWk/trasir

This package leverages current paradigms in python development. It is managed via poetry

and contains the latest (as of this writing) stack of tools, as seen in Listing A.1. It powers the

work in Section 4.2.

Listing A.1: pyproject.toml file to control the project.

[tool.poetry]

name = "trasir"

version = "0.1.0"

description = "TraSIR analysis"

authors = ["Dev Dabke <dev@dabke.com>"]

[tool.poetry.dependencies]

python = "^3.10"

pandas = "^1.5.0"

numpy = "^1.23.3"

jupyterlab = "^3.4.8"

ipykernel = "^6.16.0"

scipy = "^1.9.2"

211

https://github.com/DbCrWk/fb-paper
https://github.com/DbCrWk/trasir

torch = "^1.12.1"

dvc = {extras = ["all"], version = "^2.29.0"}

bcrypt = "^4.0.0"

rich = "^12.6.0"

ipywidgets = "^8.0.2"

matplotlib = "^3.6.1"

pydantic = "^1.10.2"

networkx = "^2.8.7"

tqdm = "^4.64.1"

pqdm = "^0.2.0"

wandb = "^0.13.5"

snakeviz = "^2.1.1"

wandb~osh = "^1.0.0"

[tool.poetry.dev~dependencies]

black = "^22.10.0"

pylint = "^2.15.3"

mypy = "^0.982"

pytest = "^7.1.3"

pytest~cov = "^4.0.0"

[build~system]

requires = ["poetry~core >=1.0.0"]

build~backend = "poetry.core.masonry.api"

[tool.pyright]

ignore = ["old"]

212

Our general approach to coding is to use classes to encapsulate data, parameters, and nat-

ural objects that reflect the structure of our mathematical tools. We have a declarative API to

accessing these mathematical objects. We also leverage parallel and matrix-compute optimized

code, as seen in Listing A.2.

Listing A.2: An example of parallel code using our object‐oriented, declarative style of coding.

” ” ”

A s c r i p t t o run s w e e p s ,

i . e . t e s t i n g ou r e s t i m a t o r on a r an g e o f p a r am e t e r s .

” ” ”

from typing import Tuple, List

import sys

import os

import traceback

import itertools

import torch

from pqdm.processes import pqdm

import pandas as pd

import wandb

sys.path.append(os.getcwd())

from trasir.model.value.hyper import Hyper

from trasir.model.value.param import Param

from trasir.model.value.initializer

import SinglePointInitializer

from trasir.model.yoke.runner import RunnerStaticFast

213

from trasir.model.estim.estimator import LossType

from trasir.model.estim.flexible_grid_estimator

import FlexibleGridEstimatorStatic

from trasir.model.lossy.masker import OnlyCMasker

from trasir.model.lossy.loser import (

Loser,

MseLoser,

MseLogLoser ,

ScaledMseLoser ,

L1Loss,

ScaledL1Loss ,

CrossEntropyLoss ,

AbsSubsetMseLoss ,

RelSubsetMseLoss ,

AbsSubsetL1Loss ,

RelSubsetL1Loss ,

)

GRID_SIZE = 4

N_JOBS = 38

N_NODES = 100

T_MAX = 1000

GRID_POINTS_EXP = 16

if __name__ == "__main__":

print("|> EXPERIMENT: Started")

time_stamp_as_int = int(pd.Timestamp.now().timestamp())

214

print(f"|> EXPERIMENT: timestamp {time_stamp_as_int}")

print(

"|> EXPERIMENT: Config",

"N_NODES",

N_NODES,

"T_MAX",

T_MAX,

"GRID_SIZE",

GRID_SIZE ,

"GRID_POINTS_EXP",

GRID_POINTS_EXP ,

"N_JOBS",

N_JOBS,

)

base_hyper = Hyper(

N=N_NODES,

t_max=T_MAX,

alpha=1,

delta=0.5

)

betas = torch.linspace(0.2, 0.8, GRID_SIZE).tolist()

rhos = torch.linspace(0.2, 0.8, GRID_SIZE).tolist()

gammas = torch.linspace(0.2, 0.8, GRID_SIZE).tolist()

loss_fns = [

MseLogLoser(),

L1Loss(),

MseLoser(),

215

RelSubsetMseLoss(0.2),

AbsSubsetMseLoss(0.02),

]

test_points = [

(time_stamp_as_int , i, base_hyper , p)

for i, p in enumerate(

list(itertools.product(

betas,

rhos,

gammas,

loss_fns

))

)

if p[0] > p[2]

b e t a > gamma

]

print(f ” ” ”

| > EXPERIMENT : { l e n (t e s t _ p o i n t s) } t o t a l p o i n t s

” ” ”)

print(f ” ” ”

| > EXPERIMENT : Running Sw e e p s

w i t h {N_JOBS } j o b s

” ” ”)

results_raw = pqdm(

test_points , run_one_sweep , n_jobs=N_JOBS

)

216

print("|> EXPERIMENT: Sweeps Complete")

print(f ” ” ”

| > EXPERIMENT : Wri t ing R e s u l t s t o

‘ r e s u l t s ~ { t im e _ s t am p _ a s _ i n t } . c s v ‘

” ” ”)

results_for_pd = [

{

"N": base_hyper.N,

"t_max": base_hyper.t_max,

"alpha": base_hyper.alpha,

"delta": base_hyper.delta,

"m": base_hyper.m,

"p": base_hyper.p,

"beta": p[0],

"rho": p[1],

"gamma": p[2],

"loss_fn": str(p[3]),

"beta_hat": est.beta,

"rho_hat": est.rho,

"gamma_hat": est.gamma,

"loss": loss,

}

for p, est, loss in results_raw

]

df = pd.DataFrame(results_for_pd)

df.to_csv(f"results~{time_stamp_as_int}.csv")

217

A.2. Basketball

We use a few packages for our analysis of basketball data.

A.2.1. bbda

See: https://github.com/DbCrWk/bbda

Written in python3, this package “BasketballDataAnalysis” leverages mostly functional

programming constructs to conduct the work in Section 5.1. We chain together pure trans-

forms on various parts of our datasets, as might be found in contemporary frameworks like

Airflow or Prefect. These transforms can be parallelized and fanned out. Listing A.3 gives an

example of a transform.

Listing A.3: A pure transform for manipulating data

” ” ”A t r a n s f o rm t h a t e x t r a c t s f r am e s from hfpd

Giv en a l i s t o f hfpd , t h i s t r a n s f o rm can g e n e r a t e

a c o r r e s p o n d i n g l i s t o f f rame s , i . e . t h e p o s i t i o n

o f a l l p l a y e r s f o r e v e r y team a t a p a r t i c u l a r t im e .

The l i s t i s s t r u c t u r e d game c l o c k > f r ame s .

” ” ”

def validate(hfpd):

” ” ”

The v a l i d a t i o n method f o r t h e F r am eE x t r a c t i o nT r a n s f o rm

Arg s :

h f pd (L i s t) : s ome h f pd

R e t u r n s :

b o o l : True i f da ta i s v a l i d . F a l s e o t h e r w i s e .

” ” ”

218

https://github.com/DbCrWk/bbda

return isinstance(hfpd, list)

def apply(hfpd):

” ” ”

The a p p l i c a t i o n method f o r t h e F r am eE x t r a c t i o nT r a n s f o rm

Arg s :

h f pd (L i s t) : s ome h f pd

” ” ”

return _extract_time_changes(hfpd)

def _extract_time_changes(frames):

” ” ”

E x t r a c t s f r am e s by t im e f o r a g i v e n l i s t o f f r am e s

” ” ”

time_change_mask = [

_does_time_change(prev, curr)

for (prev, curr) in zip(frames, frames[1:])

]

We n e ed t o c a p t u r e t h e f i r s t and l a s t e n t r y ,

s o manual l y add t h o s e in

first_idx = 0

last_idx = len(frames)

new_time_idx = (

[first_idx]

+ [

idx

219

for idx, value in enumerate(time_change_mask)

if value

]

+ [last_idx]

)

time_pairs = zip(

new_time_idx ,

new_time_idx[1:],

)

frame_sets = [

(

frames[start_idx:end_idx],

_get_game_clock(frames[start_idx]),

_get_game_clock(frames[end_idx ~ 1])

)

for (start_idx , end_idx) in time_pairs

if _is_number_of_frames_valid(start_idx , end_idx)

]

return frame_sets

def _is_number_of_frames_valid(start_idx , end_idx):

” ” ”

U s ua l l y , t h e r e s h o u l d b e e x a c t l y 14 f r am e s

in a frame s e t , wh i c h c o r r e s p o n d t o t h e number

220

o f p l a y e r s on t h e c o u r t (p l u s s ome e x t r a s) .

T h e r e f o r e , we s h o u l d t h r ow away any da ta t h a t

d o e s n o t me e t t h i s c r i t e r i o n .

” ” ”

return (end_idx ~ start_idx) == 14

def _does_time_change(hfpd_entry_a , hfpd_entry_b):

” ” ”

D e t e rm in e s , g i v e n two h f pd e n t r i e s

i f t h e t im e c h a n g e s .

” ” ”

return _get_time(hfpd_entry_a) != _get_time(hfpd_entry_b)

def _get_time(hfpd_entry):

” ” ”

Giv en an h f pd e n t r y

i t e x t r a c t s t h e t im e .

” ” ”

return int(hfpd_entry[3])

def _get_game_clock(hfpd_entry):

” ” ”

Giv en an h f pd e n t r y , i t e x t r a c t s t h e game c l o c k .

” ” ”

221

return float(hfpd_entry[11])

FrameExtractionTransform = type(

’FrameExtractionTransform’,

(),

{’apply’: apply, ’validate’: validate}

)

To actually run an experiment, we can apply and map transforms, as seen in Listing A.4.

Listing A.4: An example experiment that applies the map‐reduce transform paradigm.

” ” ” An e x p e r im e n t ” ” ”

def main():

” ” ”Main e x p e r im e n t ” ” ”

from bbda import Transformer

from bbda import CsvImportTransform

from bbda import PossessionSegmentationTransform

from bbda import FrameExtractionTransform

from bbda import FramePossessionAggregationTransform

from bbda import PossessionPlayerVelocityTransform

transformer = Transformer()

path = ’./data/events.csv’

events = transformer.transform_apply(

222

path,

CsvImportTransform

)

possessions = transformer.transform_apply(

events,

PossessionSegmentationTransform

)

paths_hfpd = [’./data/Q1.csv’, ’./data/Q2.csv’]

hfpd = transformer.transform_map(

paths_hfpd ,

CsvImportTransform

)

frames = transformer.transform_map(

hfpd,

FrameExtractionTransform

)

aggregation = transformer.transform_apply(

(possessions , frames),

FramePossessionAggregationTransform

)

transformer.transform_map(

aggregation ,

PossessionPlayerVelocityTransform

)

223

if __name__ == "__main__":

main()

A.2.2. grasket

See: https://github.com/DbCrWk/grasket, https://github.com/DbCrWk/grasket-learn,

and https://github.com/DbCrWk/neograsket.

A portmanteau of “graph” and “basket,” we have three packages to represent the work

done in Section 5.2, which extends the functionality of our basketball data analysis tools. The

original grasket package is written in Javascript (with flow) and uses object-oriented patterns.

We have a full set of computational geometry tools, as seen in Listing A.5.

Listing A.5: An example of the computational geometry tools implemented in grasket.

// @flow

import { errorLib as errorGn } from ’../util/logger’;

import Point from ’./Point’;

import Circle from ’./Circle’;

import areFloatsEqual from ’../util/areFloatsEqual’;

const namespace = ’Object > Line’;

const error = errorGn(namespace);

c l a s s Line {

slope: number;

intercept: number;

areFloatsEqual: (number, number) => boo l e an ;

224

https://github.com/DbCrWk/grasket
https://github.com/DbCrWk/grasket-learn
https://github.com/DbCrWk/neograsket

static byPoints(a: Point, b: Point): Line {

if (a.equals(b)) {

throw error(

’.byPoints’,

’Points cannot be identical’,

{ a, b }

);

}

if (a.x === b.x) {

return new Line(Infinity, a.x);

}

const rise = b.y ~ a.y;

const run = b.x ~ a.x;

const slope = rise / run;

const intercept = b.y ~ (slope * b.x);

return new Line(slope, intercept);

}

constructor(slope: number, intercept: number) {

t h i s .slope = slope;

t h i s .intercept = intercept;

t h i s .areFloatsEqual = areFloatsEqual(0.001);

}

225

equals(line: Line): boo l e an {

return (

t h i s .areFloatsEqual(t h i s .slope, line.slope)

&& t h i s .areFloatsEqual(

t h i s .intercept ,

line.intercept

)

);

}

hasPoint(p: Point): boo l e an {

if (t h i s .slope === Infinity) {

return t h i s .areFloatsEqual(

p.x,

t h i s .intercept

);

}

return (

t h i s .areFloatsEqual(

p.y,

t h i s .slope * p.x + t h i s .intercept

)

);

}

getPerpendicular(p: Point): Line {

const getNewSlope = (): number => {

226

if (t h i s .slope === Infinity) return 0;

if (t h i s .areFloatsEqual(t h i s .slope, 0)) {

return Infinity;

}

return ~(1 / t h i s .slope);

};

const newSlope = getNewSlope();

const newIntercept = newSlope === Infinity ?

p.x : p.y ~ (newSlope * p.x);

return new Line(newSlope , newIntercept);

}

getLineIntersectionPoint(line: Line): Point {

// If the lines are the same ,

// then they do not have a unique i n t e r s e c t i o n point

if (t h i s .equals(line)) return new Point(0, 0);

// If the lines are parallel , but not the same

// then they do not have an i n t e r s e c t i o n point

if (t h i s .areFloatsEqual(t h i s .slope, line.slope)) {

throw error(

’.getLineIntersectionPoint’,

’Lines are parallel, but not equal

and do not have an intersection point’,

{ l: t h i s , r: line }

);

}

227

// If this line is vertical ,

// then the i n t e r s e c t i o n is simple ; we also

// know that both lines cannot be v e r t i c a l

// because this c o n d i t i o n has

// already been checked

if (t h i s .slope === Infinity) {

const x = t h i s .intercept;

const y = line.slope * x + line.intercept;

return new Point(x, y);

}

// Same case above , but flipped

if (line.slope === Infinity) {

const x = line.intercept;

const y = t h i s .slope * x + t h i s .intercept;

return new Point(x, y);

}

// The d i f f e r e n c e in slope is well ~ defined

// and this c o m p u t a t i o n is valid

const x = (

(line.intercept ~ t h i s .intercept) /

(t h i s .slope ~ line.slope)

);

const y = t h i s .slope * x + t h i s .intercept;

228

return new Point(x, y);

}

getEndPointByTravel(start: Point, travel: number): Point {

if (! t h i s .hasPoint(start)) {

throw error(

’.getEndPointByTravel’,

’Start point not on line’,

{ l: t h i s , start, travel }

);

}

if (t h i s .slope === Infinity) {

return new Point(t h i s .intercept , start.y + travel);

}

const xTravel = (

travel /

(Math.sqrt(1 + t h i s .slope * * 2)

);

const x = start.x + xTravel;

const y = t h i s .slope * x + t h i s .intercept;

return new Point(x, y);

}

getClosestPoint(p: Point): Point {

229

const r = t h i s .getPerpendicular(p);

return t h i s .getLineIntersectionPoint(r);

}

getCircleClosestPoint(circle: Circle): Point {

return t h i s .getClosestPoint(circle.center);

}

getCircleIntersectionPoints(

circle: Circle

): Array<Point> {

const closestPoint = t h i s .getCircleClosestPoint(

circle

);

const lengthFromClosestPoint = (

closestPoint.euclideanDistanceTo(

circle.center

)

);

if (lengthFromClosestPoint > circle.radius) {

return [];

}

if (t h i s .areFloatsEqual(

lengthFromClosestPoint , circle.radius)

) {

return [closestPoint];

230

}

const travel = Math.sqrt(

circle.radius * * 2

~ lengthFromClosestPoint * * 2

);

return [~travel, travel].map(

t => t h i s .getEndPointByTravel(

closestPoint ,

t

)

);

}

}

expo r t default Line;

While the code in Listing A.5 represents most of the work in this dissertation, the neograsket

package is an updated version of this code written in python3. It includes a license, code of

conduct, and other modern package utilities for open-source code. It similarly uses poetry.

Finally, note that we did train a neural network for our results in Section 5.2. We generally

leveraged contemporary tools, e.g. pytorch and its corresponding lightning system. This

type of code can be seen in Listing A.6.

Listing A.6: An example of the machine learning tools implemented in grasket-learn.

” ” ” L i t Tra T r an s f o rm e r

Th i s modul e c o n t a i n s t h e l i g h t n i n g im p l em e n t a t i o n

o f o u r t r a t r a n s f o rm e r s y s t e m .

” ” ”

231

from argparse import ArgumentParser

import torch

import pytorch_lightning as pl

import torch.nn.functional as F

from tramodel.tra_transformer import TraTransformerModel

class LitTraTransformer(pl.LightningModule):

@staticmethod

def add_model_specific_args(parent_parser):

parser = ArgumentParser(

parents=[parent_parser],

add_help=False

)

parser.add_argument(

’~~num_tokens’,

type=int,

default=2000

)

parser.add_argument(

’~~embedding_dimension’,

type=int,

default=20

)

232

parser.add_argument(

’~~n_head’,

type=int,

default=2

)

parser.add_argument(

’~~n_hidden_dimension’,

type=int,

default=200

)

parser.add_argument(

’~~n_layer’,

type=int,

default=2

)

parser.add_argument(

’~~dropout’,

type=float,

default=0.2

)

parser.add_argument(

’~~learning_rate’,

type=float,

default=1e~4

)

parser.add_argument(

’~~hidden_frames’,

type=int,

233

default=20

)

return parser

def __init__(self, conf):

super().__init__()

self.model = TraTransformerModel(

conf.num_tokens ,

conf.embedding_dimension ,

conf.n_head,

conf.n_hidden_dimension ,

conf.n_layer,

conf.dropout

)

self.hparams = conf

def forward(self, src, tgt):

return self.model(src, tgt)

def training_step(self, batch, batch_idx):

src, tgt = batch

shift = 1

tgt_input_start_idx = 0

tgt_input_end_idx = (

self.hparams.sequence_length

234

~ shift

)

tgt_output_start_idx = shift

tgt_output_end_idx = self.hparams.sequence_length

cast_tgt = tgt.float()

tgt_input = cast_tgt[

:,

tgt_input_start_idx:tgt_input_end_idx ,

:

]

tgt_output = cast_tgt[

:,

tgt_output_start_idx:tgt_output_end_idx ,

:

]

output = self(

src.transpose(0, 1),

tgt_input.transpose(0, 1)

)

loss = F.mse_loss(

output.transpose(0, 1),

tgt_output

)

self.log(’train_loss’, loss)

return loss

235

def validation_step(self, batch, batch_idx):

src, tgt = batch

cast_tgt = tgt.float()

loss = 0

for i in range(self.hparams.hidden_frames):

tgt_input = cast_tgt[

:,

i:(

self.hparams.sequence_length

~ self.hparams.hidden_frames

+ i ~ 1

),

:

].transpose(0, 1)

tgt_output = cast_tgt[

:,

(i + 1):(

self.hparams.sequence_length

~ self.hparams.hidden_frames

+ i

),

:

].transpose(0, 1)

output = self(src.transpose(0, 1), tgt_input)

frame_loss = F.mse_loss(output, tgt_output)

236

loss += frame_loss

self.log(’val_loss’, loss)

return loss

def configure_optimizers(self):

optimizer = torch.optim.Adam(

self.parameters(),

lr=self.hparams.learning_rate

)

return optimizer

237

A.3. Code in Space

AtNASA, we used several codebases to produce the results in Chapter 6.

A.3.1. TropicALU

See: https://github.com/jacleveland/tropicalu

This project implements a tropical geometry ALU, based in verilog. The implementation

is relatively straightforward, but the key idea is that even exotic mathematical structures can

be directly instantiated in hardware. The important lesson with this project is that hardware

acceleration could provide a viable path forward for making what would ordinarily expensive

in software much faster with a direct hardware implementation.

A.3.2. sumgraph and Network Tools

See: https://github.com/DbCrWk/sumgraph and https://github.com/jacleveland/joswig.

The Joswig Algorithm described in Section 6.2.3147 is implemented in the joswig codebase.

The sumgraph codebase is the reference implementation of the techniques described in Sec-

tion 6.1.2. The sumgraph codebase implements graph summarization in a modern, functional

way. It builds upon lessons learned in other codebases referenced in this dissertation and is

written entirely in python3. It includes modern practices and robust testing, e.g. as seen in

Listing A.7.

One important problem we have to solve is finding a particular integration bound to solve

Equations 6.5, 6.6. In particular, given a non-negative, integrable function f , a lower bound

of integration a such that
∫∞
a
f(t) dt = ∞, and a target value τ > 0, we want to find b such

that ∫ b

a

f(t) dt = τ

To do this, we use Algorithm 3.

238

https://github.com/jacleveland/tropicalu
https://github.com/DbCrWk/sumgraph
https://github.com/jacleveland/joswig

Algorithm 3 An algorithm to find the upper bound of integration

procedure FindUpperBound(f, a, τ)

F (x) ≜
∫ x
a
f(t) dt

b′ ← a, b← a ∗ 2

while F (b) < τ do

b′ ← b

b← b ∗ 2

while F ((b+ b′)/2) ̸≈ τ do

if F ((b+ b′)/2) > τ then

b← (b+ b′)/2

else

b′ ← (b+ b′)/2

return (b+ b′)/2

We introduce three lemmata about this algorithm.

Lemma 10 (Existence of Bound). Given a non-negative, integrable function f , a lower bound

of integration a such that
∫∞
a
f(t) dt = ∞, and a target value τ > 0, there exists a b such

that ∫ b

a

f(t) dt = τ

The function F (x) ≜
∫ x
a
f(t) dt. If f is positive, then b is unique.

Proof. This result follows from the Fundamental Theorem of Calculus, the definition of an

integral, and the Intermediate Value Theorem.

Lemma 11 (Algorithm 3 Correctness). Algorithm 3 is correct.

Proof. The proof sketch is simple: the integral is monotonically increasing (weakly or strongly),

we use exponential backoff to find a maximum upper bound, and then binary search to find

the exact bound. Binary search works because F is monotonic from Lemma 10.

239

Lemma 12 (Algorithm 3 isO(log (b− a))). Algorithm 3 runs inO(log (b− a)) assuming a

constant-time integration solver*.

Proof. Exponential backoff will find an upper bound on bwithin time proportional to the log

of b − a. We then perform binary search between some value at most twice b and some value

between a and b.

Listing A.7: An example of the robust testing implemented in sumgraph.

” ” ”

Th i s modul e t e s t s t h e f i n d _ i n t e g r a l _ b o u n d f u n c t i o n .

” ” ”

from math import sqrt, inf

from typing import Callable

import pytest

from sumgraph.helper.find_integral_bound

import find_integral_bound

def test_basic():

” ” ”

P e r f o rm a s im p l e t e s t

” ” ”

integrable_function:

Callable[[float], float] = lambda x: x

*This assumption is not very reasonable, but we cannot control the time of an integration solver. Therefore,
our runtime gives the overhead of just our algorithm. There are many numerical methods to solve an integral
with the simplest being the Trapezoid Rule with Tai’s Method272,196 or some much more complicated quadtra-
ture technique.

240

lower_bound = 0

target_value = 1

expected_upper_bound = sqrt(2)

actual_upper_bound = find_integral_bound(

integrable_function=integrable_function ,

lower_bound=lower_bound ,

target_value=target_value ,

numerical_options={

"tolerance": 0.0000001

},

)

assert (

pytest.approx(actual_upper_bound)

== expected_upper_bound

)

def test_indicator_fn():

” ” ”

Ch e c k an i n t e g r a b l e i n d i c a t o r f u n c t i o n

” ” ”

def integrable_function(

input_x: float

) ~> float:

241

” ” ”

A b a s i c i n d i c a t o r f u n c t i o n

” ” ”

if 5 <= input_x <= 10:

return 1

return 0

lower_bound = 0

target_value = 1

expected_upper_bound = 6

actual_upper_bound = find_integral_bound(

integrable_function=integrable_function ,

lower_bound=lower_bound ,

target_value=target_value ,

numerical_options={

"tolerance": 0.0000001

},

)

assert (

pytest.approx(actual_upper_bound)

== expected_upper_bound

)

def test_infinite_bound():

242

” ” ”

En s u r e t h a t i n f i n i t y i s r e t u r n e d when

t h e bound would e x c e e d t h e max bound

” ” ”

integrable_function:

Callable[[float], float] = lambda x: x

lower_bound = 0

target_value = 100

bound = find_integral_bound(

integrable_function=integrable_function ,

lower_bound=lower_bound ,

target_value=target_value ,

numerical_options={

"max_upper_bound": 5

},

)

assert bound == inf

def test_max_iterations():

” ” ”

En s u r e t h a t a p r o p e r warn ing i s r a i s e d

when max i t e r a t i o n s wou ld b e r e a c h e d

” ” ”

243

integrable_function:

Callable[[float], float] = lambda x: x

lower_bound = 0

target_value = 100

with pytest.raises(RuntimeWarning):

find_integral_bound(

integrable_function=integrable_function ,

lower_bound=lower_bound ,

target_value=target_value ,

numerical_options={

"max_iterations": 1

},

)

The sumgraph package is open-sourced and contains proper licensing information, con-

tributing guidelines, and documentation.

244

A.4. Exploratory Code

The last two codebases worth highlighting are for exploratory code.

A.4.1. graph-norm

See: https://github.com/DbCrWk/graph-norm.

Again, this codebase follows the best practices for developing code as seen in other code-

bases. However, this codebase also defines well-structured JSON-based schemas for annotating

data structures and type information. This technique allows for the easy interchange and vali-

dation of data, especially in transit. This type of schema can be found in Listing A.8. Modern

tools, e.g. VS Code, can automatically detect URLs to these schemas and parse them for power-

ful automated validation.

Listing A.8: An example of a well‐defined JSON schema for defining data types.

{

"$schema": "http://json~schema.org/draft~07/schema#",

"$id": "https://raw.githubusercontent.com/

DbCrWk/graph~norm/development/schema/

parse.tree/1.1.0.json",

"version": "1.1.0",

"title": "Grano Parse Tree",

"description": "A grano file to describe a parse tree",

"type": "object",

"properties": {

"label": {

"description": "An identifiable text identifier

for this tree",

"type": "string"

245

https://github.com/DbCrWk/graph-norm

},

"version": {

"description": "The version that the

parse.tree should be checked against",

"type": "string",

"enum": [

"1.1.0"

]

},

"vertices": {

"description": "A set of vertices to add

to all entries of the graph sequence",

"type": "array",

"items": {

"$ref": "#/definitions/vertex"

},

"minItems": 0,

"uniqueItems": true

},

"graphs": {

"description": "A set of graphs that

can be easily referenced",

"type": "object",

"patternProperties": {

"^[A~Za~z~][A~Za~z0~9_~]*$": {

"$ref": "#/definitions/graph"

}

},

246

"uniqueItems": true

},

"sequence": {

"description": "The graph sequence",

"type": "array",

"items": {

"oneOf": [

{

"$ref": "#/definitions/graph_with_label"

},

{

"$ref": "#/definitions/graph_label"

}

]

},

"uniqueItems": false

},

"temporal": {

"$ref": "https://raw.githubusercontent.com/

DbCrWk/graph~norm/development/schema/

temporal.tree/1.0.0.json"

},

"topological": {

"$ref": "https://raw.githubusercontent.com/

DbCrWk/graph~norm/development/schema/

topological.tree/1.0.0.json"

},

"$schema": {

247

"type": "string",

"enum": [

"https://raw.githubusercontent.com/

DbCrWk/graph~norm/development/schema/

parse.tree/1.1.0.json"

]

}

},

"definitions": {

"vertex": {

"description": "A single vertex",

"type": [

"number",

"string"

]

},

"edge": {

"description": "A single edge",

"type": "array",

"items": [

{

"$ref": "#/definitions/vertex"

},

{

"$ref": "#/definitions/vertex"

}

],

"minItems": 2,

248

"maxItems": 2,

"additionalItems": false

},

"graph_label": {

"description": "A string identifier

for a graph",

"type": "string"

},

"graph": {

"type": "object",

"properties": {

"label": {

"$ref": "#/definitions/graph_label"

},

"edges": {

"description": "A set of edges for

a particular graph",

"type": "array",

"items": {

"$ref": "#/definitions/edge"

},

"minItems": 0,

"uniqueItems": true

},

"vertices": {

"description": "A set of vertices for

this graph",

"type": "array",

249

"items": {

"$ref": "#/definitions/vertex"

},

"minItems": 0,

"uniqueItems": true

}

}

},

"graph_with_label": {

"$ref": "#/definitions/graph",

"required": [

"label"

]

}

},

"required": [

"label",

"version",

"temporal",

"topological",

"vertices",

"graphs",

"sequence"

],

"additionalProperties": false

}

250

A.4.2. Omnibus

See: https://github.com/DbCrWk/omnibus

The Omnibus package leverages contemporary techniques in data analysis and our mathe-

matical tools to analyze transit data. What started as a simple set of code tools to analyze MTA

bus data for New York City has morphed into a general tool to study data in theGeneral Tran-

sit Feed Specification (GTFS). GTFS is a generic system for reporting transit data. The novely

of this codebase is that it introduces a helpful CLI and includes tools for manipulating large

data files.

251

https://github.com/DbCrWk/omnibus

References

[1] Aggarwal, C. & Subbian, K. (2014). Evolutionary network analysis: A survey. ACM
Comput. Surv., 47(1).

[2] Aggarwal, C. C. & Reddy, C. K. (2013). Data Clustering: Algorithms and Applications.
Chapman and Hall/CRC.

[3] Ajelli, M., Gonçalves, B., Balcan, D., Colizza, V., Hu, H., Ramasco, J. J., Merler, S., &
Vespignani, A. (2010). Comparing large-scale computational approaches to epidemic
modeling: Agent-based versus structured metapopulation models. BMC infectious
diseases, 10, 190.

[4] Akrida, E. C., Czyzowicz, J., Gasieniec, L., Kuszner, L., & Spirakis, P. G. (2016). Tem-
poral flows in temporal networks. arXiv.

[5] Al Hanbali, A., de Haan, R., Boucherie, R. J., & van Ommeren, J.-K. (2008). A tan-
dem queueing model for delay analysis in disconnected ad hoc networks. In K. Al-
Begain, A. Heindl, &M. Telek (Eds.), Analytical and Stochastic Modeling Techniques
and Applications (pp. 189–205). Berlin, Heidelberg: Springer Berlin Heidelberg.

[6] Alt, H. & Godau, M. (1995). Computing the fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 05(01n02),
75–91.

[7] Ameri, K. & Cooper, K. (2019). A network-based compartmental model for the spread
of whooping cough in nebraska. AMIA Joint Summits on Translational Science pro-
ceedings. AMIA Joint Summits on Translational Science, 2019, 388–397.

[8] Angelopoulos, S., Doerr, B., Huber, A., & Panagiotou, K. (2009). Tight bounds for
quasirandom rumor spreading. Electron J Combined.

[9] Arabi, S., Sabir, E., & Elbiaze, H. (2018). Information-centric networking meets delay
tolerant networking: Beyond edge caching. In 2018 IEEEWireless Communications
and Networking Conference (WCNC) (pp. 1–6).

[10] Araniti, G., Bezirgiannidis, N., Birrane, E., Bisio, I., Burleigh, S., Caini, C., Feldmann,
M., Marchese, M., Segui, J., & Suzuki, K. (2015). Contact graph routing in dtn space
networks: overview, enhancements and performance. IEEE CommunicationsMaga-
zine, 53(3), 38–46.

[11] Artemis orbits (2013). Index of /pub/naif/themis/kernels/spk. https://naif.jpl.
nasa.gov/pub/naif/THEMIS/kernels/spk/.

252

https://naif.jpl.nasa.gov/pub/naif/THEMIS/kernels/spk/
https://naif.jpl.nasa.gov/pub/naif/THEMIS/kernels/spk/

[12] Baccelli, F., Cohen, G., Olsder, G. J., & Quadrat, J.-P. (1992). Synchronization and
Linearity: An Algebra for Discrete Event Systems. J. Wiley & Sons.

[13] Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D.-Y., Chen, L., &Wang, M. (2020). Presumed
asymptomatic carrier transmission of covid-19. JAMA, 323.

[14] Bainbridge, G., Hylton, A., & Short, R. (N.D.). Directional cellular sheaves for multi-
cast network routing. unpublished.

[15] Baker, E. (2017). Redefining Basketball Positions with Unsupervised Learning. to-
wards data science.

[16] Bakke Botnan, M. & Lesnick, M. (2016). Algebraic Stability of Zigzag Persistence
Modules. arXiv e-prints, (pp. arXiv:1604.00655).

[17] Bakkelund, D. (2009). An lcs-based string metric.

[18] Ball, F., Sirl, D., & Trapman, P. (2010). Analysis of a stochastic sir epidemic on a ran-
dom network incorporating household structure. Mathematical Biosciences, 242(2),
53–73.

[19] Bang-Jensen, J. & Gutin, G. Z. (2009). Digraphs: Theory, Algorithms and Applications.
Springer-Verlag London.

[20] Barabási, A.-L. (2013). Network science. Philosophical Transactions of the Royal Society
A:Mathematical, Physical and Engineering Sciences, 371(1987).

[21] Barab’asi, A.-L. & Oltvai, Z. N. (2004). Network biology: understanding the cell’s
functional organization. Nature Reviews Genetics, 5(2), 101–113.

[22] Barrat, A., Barthelemy, M., & Vespignani, A. (2008). Dynamical Processes on Complex
Networks. New York, NY, USA: Cambridge University Press.

[23] Beckham, J. W. (2012). Analytics Reveal 13 New Basketball Positions. Wired.

[24] Bendich, P., Chin, S. P., Clark, J., Desena, J., Harer, J., Munch, E., Newman, A.,
Porter, D., Rouse, D., Strawn, N., &Watkins, A. (2016). Topological and statistical
behavior classifiers for tracking applications. IEEE Transactions on Aerospace and Elec-
tronic Systems, 52(6), 2644–2661.

[25] Bezirgiannidis, N. & Tsaoussidis, V. (2014). Predicting queueing delays in delay tol-
erant networks with application in space. In A. Mellouk, S. Fowler, S. Hoceini, &
B. Daachi (Eds.),Wired/Wireless Internet Communications (pp. 228–242). Cham:
Springer International Publishing.

[26] Bialkowski, A., Park, S., Carr, G. P., Matthews, I., & Yue, Y. (2018). Analysis Of Team
Behaviors Using Role And Formation Information.

253

[27] Biswas, A., Srinivasan, M., Rogalin, R., Piazzolla, S., Liu, J. Y.-C., Schratz, B. C.,
Wong, A., Alerstam, E., Wright, M. W., Roberts, W. T., Kovalik, J. M., Ortiz, G.,
Na-Nakornpanom, A., Shaw, M. D., Okino, C., Andrews, K. S., Peng, M. Y., Orozco,
D. S., & Klipstein, W. M. (2017). Status of nasa’s deep space optical communication
technology demonstration. 2017 IEEE International Conference on Space Optical Sys-
tems and Applications (ICSOS), (pp. 23–27).

[28] Bjerkevik, H. (2021). On the stability of interval decomposable persistence modules.
Discrete & Computational Geometry, 66.

[29] Bloch, F., Jackson, M. O., & Tebaldi, P. (2021). Centrality measures in networks.
Arxiv.org.

[30] Bobrowski, O. & Kahle, M. (2017). The topology of probability distributions on
manifolds. IEEE Trans. Netw. Sci. Eng., 4, 215.

[31] Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: a
review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.

[32] Brauer, F., Driessche, P., &Wu, J. (2008). Mathematical Epidemiology. Springer
Berlin, Heidelberg, 1 edition.

[33] Burkart, J., II, D. C., Jansen, C., Taylor, A., & O’Keefe, A. (2006). Graphs: graphs and
directed graphs (digraphs). Version 0.3.2. AMacaulay2 package available at https:
//github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages.

[34] Burleigh, S. (2007). Interplanetary overlay network: An implementation of the dtn
bundle protocol. 2007 4th IEEE Consumer Communications and Networking Confer-
ence, (pp. 222–226).

[35] Byambasuren, O., Cardona, M., Bell, K., Clark, J., Mclaws, M., & Glasziou, P. (2020).
Estimating the extent of asymptomatic covid-19 and its potential for community trans-
mission: Systematic review and meta-analysis. Journal of the Association ofMedical
Microbiology and Infectious Disease Canada.

[36] Bárány, I. & Füredi, Z. (1987). Computing the volume is difficult. Discrete & Compu-
tational Geometry, 2.

[37] Cabacas, R. & Ra, I. (2013). Evaluating mobility models in delay tolerant network. In
2013 International Conference on IT Convergence and Security (ICITCS) (pp. 1–4).

[38] Caceres, R. S. & Berger-Wolf, T. Y. (2012). The measurement of time-varying net-
works. In Temporal Networks (pp. 147–169).: Springer.

[39] Cahill, L., Haier, R. J., Fallon, J., Alkire, M. T., Tang, C., Keator, D., Wu, J., &Mc-
Gaugh, J. L. (1996). Amygdala activity at encoding correlated with long-term, free re-
call of emotional information. Proceedings of the National Academy of Sciences, 93(15),
8016–8021.

[40] Carlson, S. C. (2022). Graph theory.

254

https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages

[41] Carlsson, G., de Silva, V., &Morozov, D. (2009). Zigzag persistent homology and
real-valued functions. In Proceedings of the Twenty-Fifth Annual Symposium on Com-
putational Geometry, SCG ’09 (pp. 247–256). New York, NY, USA: Association for
ComputingMachinery.

[42] Casteigts, A., Flocchini, P., Quattrociocchi, W., & Santoro, N. (2010). Time-varying
graphs and dynamic networks. CoRR, abs/1012.0009.

[43] CelesTrak (2001). Artemis. https://celestrak.com/satcat/tle.php?INTDES=
2001-029.

[44] CelesTrak (2021). Search of satcat. https://celestrak.com/satcat/search-results.
php.

[45] Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., &Weiss,
H. (2007). RFC 4838, Delay-Tolerant Networking Architecture. IETF Network
Working Group.

[46] Chan, J. M., Carlsson, G., & Rabadan, R. (2014). Topology of viral evolution. Bioin-
formatics, 30, 98.

[47] Chazelle, B. (2015). Algorithmic renormalization for network dynamics. IEEE Trans-
actions on Network Science and Engineering, 2(1), 1–16.

[48] Chazelle, B. (2019). Some observations on dynamic random walks and network renor-
malization. In L. A. Gąsieniec, J. Jansson, & C. Levcopoulos (Eds.), Fundamentals of
Computation Theory (pp. 18–28). Cham: Springer International Publishing.

[49] Chazelle, B. (2020). On the periodicity of random walks in dynamic networks. IEEE
Transactions on Network Science and Engineering, 7(3), 1337–1343.

[50] Chen, C., Wang, M., Zhang, M., Liu, Y., Wu, Y., &Wu, C. (2020). Dynamic graph
collaborative filtering. arXiv preprint arXiv:2005.02858.

[51] Chen, M. F. & Rácz, M. Z. (2022). An adversarial model of network disruption: Max-
imizing disagreement and polarization in social networks. IEEE Transactions on Net-
work Science and Engineering, 9(2), 728–739.

[52] Cheng, A. (2017). UsingMachine Learning to Find the 8 Types of Players in the NBA.
Fastbreak Data.

[53] Chierichetti, F., Lattanzi, S., & Panconesi, A. (2010). Almost tight bounds for rumour
spreading with conductance. Proceedings of the forty-second ACM symposium on Theory
of computing, (pp. 399–408).

[54] Choi, P. P. &Hebert, M. (2006). Learning and predicting moving object trajectory: A
piecewise trajectory segment approach. Robotics Institute, CarnegieMellon University.

[55] Clare, L., Burleigh, S., & Scott, K. (2010). Endpoint naming for space delay / disrup-
tion tolerant networking. In 2010 IEEE Aerospace Conference (pp. 1–10).

255

https://celestrak.com/satcat/tle.php?INTDES=2001-029
https://celestrak.com/satcat/tle.php?INTDES=2001-029
https://celestrak.com/satcat/search-results.php
https://celestrak.com/satcat/search-results.php

[56] Cleveland, J., Hylton, A., Short, R., Mallery, B., Green, R., Curry, J., Dabke, D. V.,
& Freides, O. (2022). Introducing tropical geometric approaches to delay tolerant
networking optimization. In 2022 IEEE Aerospace Conference (AERO) (pp. 1–11).

[57] Cleveland, J., Mallery, B., Hylton, A., & Short, R. (Nov 2021). Planting a flag in the
tropics the essential tropical geometric background for networking applications.

[58] Cohan, S. (2020). Team LSTM: Player Trajectory Prediction in Basketball Games
using Graph-based LSTMNetworks. Master’s thesis, The University of British
Columbia, Vancouver, British Columbia, Canada.

[59] Cohen, J. (1992). Infectious diseases of humans: Dynamics and control. JAMA: The
Journal of the AmericanMedical Association, 268, 3381.

[60] Colledanchise, M., Parasuraman, R., & Ogren, P. (2018). Learning of Behavior Trees
for Autonomous Agents. IEEE Transactions on Games, 11(2), 183–189.

[61] Connell, C. (2022). fips2county (dataset). https://github.com/ChuckConnell/
articles/blob/master/fips2county.tsv. Accessed October 9, 2022.

[62] Cui, P., Yu, Z., Zhu, S., & Gao, A. (2013). Real-time navigation for mars final ap-
proach using x-ray pulsars. AIAA Guidance, Navigation, and Control (GNC) Confer-
ence.

[63] Curry, J. (2013). Sheaves, cosheaves and applications. arXiv.

[64] Dabke, D. V. & Arroyo, E. E. (2016). Rumors with personality: A differential and
agent-based model of information spread through networks. SIAMUndergraduate
Research Online, 9, 453–467.

[65] Dabke, D. V. & Chazelle, B. (2021). Extracting semantic information from dynamic
graphs of geometric data. In R. M. Benito, C. Cherifi, H. Cherifi, E. Moro, L. M.
Rocha, &M. Sales-Pardo (Eds.), Complex Networks & Their Applications X - Volume
2, Proceedings of the Tenth International Conference on Complex Networks and Their
Applications COMPLEXNETWORKS 2021,Madrid, Spain, November 30 - De-
cember 2, 2021, volume 1016 of Studies in Computational Intelligence (pp. 474–485).:
Springer.

[66] Daganzo, C. F. (1994). The cell transmission model: A dynamic representation of
highway traffic consistent with the hydrodynamic theory. Transportation Research Part
B:Methodological, 28(4), 269–287.

[67] Daley, D. J. & Kendall, D. G. (1965). Stochastic rumors. IMA Journal of Applied
Mathematics, 1(1), 42–55.

[68] de Silva, V. & Carlsson, G. (2006). Coordinate-free coverage in sensor networks with
controlled boundaries via homology. In Proceedings of the 7th ACM International
Symposium onMobile Ad Hoc Networking and Computing (pp. 299–308).

[69] Dehne, F., Omran, M. T., & Sack, J.-R. (2012). Shortest paths in time-dependent fifo
networks. Algorithmica, 62(1), 416–435.

256

https://github.com/ChuckConnell/articles/blob/master/fips2county.tsv
https://github.com/ChuckConnell/articles/blob/master/fips2county.tsv

[70] Deligne, P. (1977). Cohomologie etale: Séminaire de géométrie algébrique du bois-
marie sga 4 1/2. In Lecture Notes inMathematics, volume 569: Springer.

[71] Demmer, M. & Fall, K. (2007). Dtlsr: Delay tolerant routing for developing regions.
In Proceedings of the 2007 workshop on Networked systems for developing regions, NSDR
’07 New York, NY, USA: Association for ComputingMachinery.

[72] Dijkstra, E. W. et al. (1959). A note on two problems in connexion with graphs. Nu-
merische mathematik, 1(1), 269–271.

[73] Ding, X., Huang, S., Leung, A., & Rabbany, R. (2021). Incorporating dynamic flight
network in seir to model mobility between populations. Applied Network Science, 6.

[74] Doerr, B., Fouz, M., & Friedrich, T. (2012). Why rumors spread so quickly in social
networks. Communications of the ACM, 55(6), 70–75.

[75] Dorabiala, O., Webster, J., Kutz, N., & Aravkin, A. (2022). Spatiotemporal k-means.
https://arxiv.org/abs/2211.05337. pre-print.

[76] Dottori, M. & Fabricius, G. (2014). Sir model on a dynamical network and the en-
demic state of an infectious disease. Physica A: StatisticalMechanics and its Applica-
tions, 434.

[77] DSG orbit (2018). Index of /pub/naif/misc/more_projects/dsg. https://naif.jpl.
nasa.gov/pub/naif/misc/MORE_PROJECTS/DSG/.

[78] Dunbar, R. (1992). Neocortex size as a constraint on group size in primates. Journal of
Human Evolution, 22(6), 469 – 493.

[79] Dyer, M., Frieze, A., & Kannan, R. (1988). A random polynomial time algorithm for
approximating the volume of convex bodies. Journal of the ACM.

[80] Edelsbrunner, H. &Harer, J. (2008). Persistent homology—a survey. Discrete &
Computational Geometry - DCG, 453.

[81] Edelsbrunner, H. &Harer, J. (2010). Computational Topology: An Introduction. Amer-
icanMathematical Society.

[82] Edelsbrunner, H., Letscher, D., & Zomorodian, A. (2002). Topological persistence
and simplification. Found. Comput. Math., 2, 1.

[83] Edmunds, W. J., Kafatos, G., Wallinga, J., &Mossong, J. R. (2006). Mixing patterns
and the spread of close-contact infectious diseases. Emerging Themes in Epidemiology,
3(1), 10.

[84] Eiter, T. &Mannila, H. (1994). Computing Discrete Frechet Distance. Technical report,
Technische Universität Wien, Paniglgasse 16, 1040Wien.

[85] Eletreby, R., Zhuang, Y., Carley, K., Yagan, O., & Poor, H. V. (2020). The effects of
evolutionary adaptations on spreading processes in complex networks. Proceedings of
the National Academy of Sciences, 117, 201918529.

257

https://arxiv.org/abs/2211.05337
https://naif.jpl.nasa.gov/pub/naif/misc/MORE_PROJECTS/DSG/
https://naif.jpl.nasa.gov/pub/naif/misc/MORE_PROJECTS/DSG/

[86] Estrada, E. &Higham, D. J. (2010). Network properties revealed through matrix func-
tions. SIAMReview, 52(4), 696–714.

[87] Euler, L. &Newman, J. R. (1960). The Seven Bridges of Konigsberg, volume 1, (pp.
573–580). George Allen and Unwin Ltd.

[88] Fewell, J. H., Armbruster, D., Ingraham, J., Petersen, A., &Waters, J. S. (2012). Basket-
ball teams as strategic networks. PloS one, 7(11).

[89] Floyd, R. W. (1962). Algorithm 97: Shortest path. Commun. ACM, 5(6), 345.

[90] Forman, R. (2001). A user’s guide to discrete morse theory. Sém. Lothar. Combin., 48.

[91] Foskey, M. & Booyabazooka (2022). Abstract graph corresponding to bridges of
königsberg. https://commons.wikimedia.org/wiki/File:Königsberg_graph.svg.

[92] Fountoulakis, N. & Panagiotou, K. (2010). Rumor spreading on random regular
graphs and expanders. ArXiv e-prints.

[93] Fout, A., Byrd, J., Shariat, B., & Ben-Hur, A. (2017). Protein interface prediction using
graph convolutional networks. Advances in Neural Information Processing Systems, 30,
6530–6539.

[94] Fraire, J. A., De Jonckère, O., & Burleigh, S. C. (2021). Routing in the space internet:
A contact graph routing tutorial. Journal of Network and Computer Applications, 174.

[95] Fraire, J. A., Madoery, P., Burleigh, S., Feldmann, M., Finochietto, J., Charif, A., Zer-
gainoh, N., & Velazco, R. (2017). Assessing Contact Graph Routing Performance and
Reliability in Distributed Satellite Constellations.

[96] Gaitonde, J., Kleinberg, J., & Tardos, E. (2020). Adversarial perturbations of opinion
dynamics in networks. In Proceedings of the 21st ACMConference on Economics and
Computation, EC ’20 (pp. 471–472). New York, NY, USA: Association for Comput-
ing Machinery.

[97] Ghrist, R. (2008). Data aggregation over networks via integration. The 5th IEEE
International Conference on Autonomic Computing. Keynote.

[98] Ghrist, R. (2014). Elementary Applied Topology. CreateSpace Independent Publishing
Platform.

[99] Ghrist, R. &Hiraoka, Y. (2011). Applications of sheaf cohomology and exact se-
quences to network coding. Proc. NOLTA.

[100] Gillespie, N. A. &Mann, L. (2004). Transformational leadership and shared values:
The building blocks of trust. Journal ofManagerial Psychology, 19(6), 588–607.

[101] GitHub &OpenAI (2021). Github copilot: Your ai pair programmer. https://
copilot.github.com.

[102] Giuşcă, B. (2005). The problem of the seven bridges of königsberg. https://en.
wikipedia.org/wiki/File:Konigsberg_bridges.png.

258

https://commons.wikimedia.org/wiki/File:Königsberg_graph.svg
https://copilot.github.com
https://copilot.github.com
https://en.wikipedia.org/wiki/File:Konigsberg_bridges.png
https://en.wikipedia.org/wiki/File:Konigsberg_bridges.png

[103] Giusti, C., Pastalkova, E., Curto, C., & Itskov, V. (2016). A topological approach to
simplifying the dynamics of resting-state networks in the human brain. PLOS Comput.
Biol., 12, e1005181.

[104] Goldblatt, R. (2006). Topoi: The Categorial Analysis of Logic. Dover Books onMathe-
matics. Dover Publications.

[105] G’omez, S., D’iaz-Guilera, A., G’omez-Garde nes, J., P’erez-Vicente, C. J., &Moreno, Y.
(2013). Diffusion dynamics on multiplex networks. Physical Review Letters, 110(2),
028701.

[106] Gonçalves, B., Coutinho, D., Santos, S., Lago-Penas, C., Jiménez, S., & Sampaio, J.
(2017). Exploring team passing networks and player movement dynamics in youth
association football. PLoS ONE, 12(1), 1–13.

[107] Gould, P. & Gatrell, A. (1979). A structural analysis of a game: The Liverpool v
Manchester united cup final of 1977. Social Networks, 2(3), 253–273.

[108] Goyal, P., Chhetri, S. R., & Canedo, A. (2020). Dysat: Deep neural represen-
tation learning on dynamic graphs via self-attention networks. arXiv preprint
arXiv:2001.00596.

[109] Graber, C. & Schwing, A. (2020). Dynamic Neural Relational Inference for Forecast-
ing Trajectories. Cvpr.

[110] Grabowski, A., Kruszewska, N., & Kosinski, R. A. (2008). Properties of on-line social
systems. European Physical Journal B, 66(1), 107–113.

[111] Grasic, S., Davies, E., Lindgren, A., & Doria, A. (2011). The evolution of a dtn routing
protocol - prophetv2. In Proceedings of the 6th ACMWorkshop on Challenged Net-
works, CHANTS ’11 (pp. 27–30). New York, NY, USA: Association for Computing
Machinery.

[112] Grayson, D. R. & Stillman, M. E. (2021). Macaulay2, a software system for research in
algebraic geometry. https://math.uiuc.edu/Macaulay2/.

[113] Green, R. (2023). Personal Conversation.

[114] Green, R., Cardona, R., Cleveland, J., Ozbolt, J., Hylton, A., Short, R., & Robinson,
M. (2021). Dude where’s my stars: A novel topologically justified approach to star
tracking. In 2021 IEEE Aerospace Conference.

[115] Greene, D., Doyle, D., & Cunningham, P. (2010). Tracking the evolving community
structure of networks. In Proceedings of the 23rd International Conference on Neural
Information Processing Systems (pp. 665–673).

[116] Grigor’yan, A., Lin, Y., Muranov, Y., & Yau, S.-T. (2014). Homotopy theory for di-
graphs. arXiv e-prints, (pp. arXiv:1407.0234).

[117] Gu, J., Li, W., & Cai, X. (2008). The effect of forget-remember mechanism on spread-
ing. The European Physical Journal B, 62(2), 247–255.

259

https://math.uiuc.edu/Macaulay2/

[118] Gudmundsson, J. & Horton, M. (2017). Spatio-temporal analysis of team sports.
ACMComputing Surveys, 50(2), 1–34.

[119] Guerin, B. &Miyazaki, Y. (2006). Analyzing rumors, gossip, and urban legends
through their conversational properties. The Psychological Record, 56(1), 23–34.

[120] Gulyàs, A., Bìrò, J. J., Kőrösi, A., Rètvàri, G., & Krioukov, D. (2015). Navigable net-
works as nash equilibria of navigation games. Nature Communications.

[121] Gupta, C. &Wang, D. H. (2014). Evolutionary clustering and analysis of dynamic
networks. ACMComputing Surveys, 47(2), 1–36.

[122] Hansen, J. & Ghrist, R. (2021). Opinion dynamics on discourse sheaves. SIAM Jour-
nal on AppliedMathematics, 81(5), 2033–2060.

[123] Har-Peled, S. (2011). Geometric Approximation Algorithms. Department of Com-
puter Science, University of Illinois in Urbana- Champaign, Urbana, Illinois 61801:
AmericanMathematical Society.

[124] Hatfield, M. (2020). Time history of events and macroscale interactions during
substorms mission: Tracking the space storms responsible for triggering auroras.
https://www.nasa.gov/mission_pages/themis/mission/index.html.

[125] Hegselmann, R. & Krause, U. (2002). Opinion dynamics and bounded confidence
models, analysis and simulation. Journal of Artificial Societies and Social Simulation, 5.

[126] Hewitt, E. & Stromberg, K. (1965). Real and Abstract Analysis. Pringer Publishing
Co., Inc.

[127] Hillar, C., Krone, R., & Leykin, A. (2021). EquivariantGB: Equivariant Groebner
bases and related algorithms. Version 0.2. https://faculty.math.illinois.edu/
Macaulay2/doc/Macaulay2-1.17/share/doc/Macaulay2/EquivariantGB/html/index.
html.

[128] Hobbs, J., Holbrook, M., Frank, N., Sha, L., & Lucey, P. (2019). Improved Structural
Discovery and Representation Learning of Multi-Agent Data. arXiv, (pp. 1–16).

[129] Hofbauer, J. & Sigmund, K. (1998). Evolutionary Games and Population Dynamics.
Cambridge University Press.

[130] Holme, P. & Saram”aki, J. (2012). Temporal networks. Physics Reports, 519(3), 97–
125.

[131] Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554–
2558.

[132] Hylton, A., Raible, D., & Clark, G. (2019). A delay tolerant networking-based ap-
proach to a high data rate architecture for spacecraft. In 2019 IEEE Aerospace Confer-
ence (pp. 1–10).

260

https://www.nasa.gov/mission_pages/themis/mission/index.html
https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.17/share/doc/Macaulay2/EquivariantGB/html/index.html
https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.17/share/doc/Macaulay2/EquivariantGB/html/index.html
https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.17/share/doc/Macaulay2/EquivariantGB/html/index.html

[133] Hylton, A., Raible, D., Clark, G., Dudukovich, R., Tomko, B., & Burke, L. (2019).
Rising above the cloud – toward high-rate delay-tolerant networking in low-earth orbit.
In 37th AIAA International Communications Satellite Systems Conference (pp. 1–8).

[134] Hylton, A. & Raible, D. E. (2016). High data rate architecture (hidra). In 34th AIAA
International Communications Satellite Systems Conference.

[135] Hylton, A., Raible, D. E., & Clark, G. (2017). On the development and application
of high data rate architecture (hidra) in future space networks. In 35th AIAA Interna-
tional Communications Satellite Systems Conference.

[136] Hylton, A., Short, R., Cleveland, J., Freides, O., Memon, Z., Cardona, R., Green, R.,
Curry, J., Gopalakrishnan, S., Dabke, D. V., Story, B., Moy, M., &Mallery, B. (2022).
A survey of mathematical structures for lunar networks. In 2022 IEEE Aerospace Con-
ference (AERO) (pp. 1–17).

[137] Hylton, A., Short, R., Green, R., & Toksoz-Exley, M. (2020). A mathematical anal-
ysis of an example delay tolerant network using the theory of sheaves. In 2020 IEEE
Aerospace Conference (pp. 1–11).

[138] Ising, E. (1925). Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik, 31(1),
253–258.

[139] Israel, D., Edwards, B., Hayes, J., Knopf, W., Robles, A., & Braatz, L. (2019). The
benefits of delay/disruption tolerant networking for future nasa science missions. In
70th International Astronautical Congress (IAC) (pp. 1–12).

[140] Israel, D. J., Edwards, B. L., & Staren, J. W. (2017). Laser communications relay
demonstration (lcrd) update and the path towards optical relay operations. In 2017
IEEE Aerospace Conference (pp. 1–6).

[141] Jackson, M. O. & Zenou, Y. (2014). Games on networks. Handbook of Game Theory,
4.

[142] Jain, M. H. & Patra, R. (2003). Implementing delay tolerant networking. University of
California, Berkeley, Computer Science Division, Berkeley, CA, 94720.

[143] Jain, S., Fall, K., & Patra, R. (2004). Routing in a delay tolerant network. In Proceed-
ings of the 2004 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM ’04 (pp. 145–158). New York, NY, USA:
Association for ComputingMachinery.

[144] Jia, H., Ren, C., Hu, Y., Chen, Y., Lv, T., Fan, C., Tang, H., &Hao, J. (2020). Mas-
tering Basketball with Deep Reinforcement Learning : An Integrated Curriculum
Training Approach � Extended Abstract. Adaptive Agents andMulti-Agent Systems.

[145] Jones, E. P. &Ward, P. A. (2006). Routing strategies for delay-tolerant networks. Sub-
mitted to ACMComputer Communication Review (CCR).

[146] Joswig, M. (April 2019). Optimization and tropical geometry: Exercises and problems
1.

261

[147] Joswig, M. & Schröter, B. (Nov 2020). Parametric shortest-path algorithms via tropical
geometry.

[148] Jørgen Bang-Jensen, G. G. (2002). Digraphs: Theory, Algorithms and Applications.
Springer.

[149] Kamins, M. A., Folkes, V. S., & Perner, L. (1997). Consumer responses to rumors:
Good news, bad news. Journal of Consumer Psychology, 6(2), 165–187.

[150] Karp, R., Schindelhauer, C., Shenker, S., & V’́ocking, B. (2000). Randomized rumor
spreading. Foundations of Computer Science, Proceedings of the 41st Annual Sympo-
sium on Foundations of Computer Science, 565–574.

[151] Kauffman, S. (1969). Metabolic stability and epigenesis in randomly constructed ge-
netic nets. Journal of Theoretical Biology, 22(3), 437–467.

[152] Kermack, W. O. &McKendrick, A. G. (1927). A contribution to the mathematical
theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing
Papers of aMathematical and Physical Character, 115(772), 700–721.

[153] Kessinger, T. A., Tarnita, C. E., & Plotkin, J. B. (2022). Evolution of social norms for
moral judgment.

[154] Kim, H. & Anderson, R. (2012). Temporal node centrality in complex networks. Phys-
ical Review E, 85(2), 026107.

[155] Knapp, R. H. (1944). A psychology of rumor. Public Opinion Quarterly, (pp. 22–27).

[156] Knopp, K. (1928). Theory and Application of Infinite Series. Blackie & Son, Ltd.

[157] Krishnan, S. (2014). Flow-cut dualities for sheaves on graphs. arXiv.

[158] Kronbichler, A., Kresse, D., Yoon, S., Lee, K., Effenberger, M., & Shin, J. I. (2020).
Asymptomatic patients as a source of covid-19 infections: A systematic review and
meta-analysis. International Journal of Infectious Diseases.

[159] Kurach, K., Raichuk, A., Stańczyk, P., Zaja̧c, M., Bachem, O., Espeholt, L., Riquelme,
C., Vincent, D., Michalski, M., Bousquet, O., & Gelly, S. (2020). Google research foot-
ball: A novel reinforcement learning environment. Proceedings of the AAAI Conference
on Artificial Intelligence, 34, 4501–4510.

[160] Kuramoto, Y. (1975). Self-entrainment of a population of coupled non-linear oscilla-
tors. In International Symposium onMathematical Problems in Theoretical Physics.

[161] Landau, E. G. H. (1951). Foundations of Analysis. Chelsea Publishing Company.

[162] Landers, J. R. & Duperrouzel, B. (2018). Machine Learning Approaches to Compet-
ing in Fantasy Leagues for the NFL. IEEE Transactions on Games, 11(2), 159–172.

[163] Lau, M. S., Grenfell, B., Thomas, M., Bryan, M., Nelson, K., & Lopman, B. (2020).
Characterizing super-spreading events and age-specific infectiousness of sars-cov-2
transmission in georgia, usa. medRxiv.

262

[164] Layton, A. T. & Sadria, M. (2022). Understanding the dynamics of sars-cov-2 variants
of concern in ontario, canada: a modeling study. Scientific Reports, 12(1), 2114.

[165] Li, C., Zhu, Y., Qi, C., Liu, L., Zhang, D., Wang, X., She, K., Jia, Y., Liu, T., He, D.,
Xiong, M., & Li, X. (2021). Estimating the prevalence of asymptomatic covid-19 cases
and their contribution in transmission - using henan province, china, as an example.
Frontiers inMedicine, 8.

[166] Li, L., Cheng, W.-Y., Glicksberg, B. S., Gottesman, O., Tamler, R., Chen, R., Bottinger,
E. P., & Dudley, J. T. (2015). Identification of type 2 diabetes subgroups through
topological analysis of patient similarity. Science TranslationalMedicine, 7(311),
311ra174–311ra174.

[167] Li, M. G., Jiang, B., Zhu, H., Che, Z., & Liu, Y. (2020a). Generative Attention Net-
works for Multi-Agent Behavioral Modeling. The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Arti-
ficial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI, (pp. 7195–7202).

[168] Li, M. Z., Ryerson, M. S., & Balakrishnan, H. (2019). Topological data analysis for
aviation applications. Transportation Research Part E: Logistics and Transportation
Review, 128, 149–174.

[169] Li, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W., & Shaman, J. (2020b). Substan-
tial undocumented infection facilitates the rapid dissemination of novel coronavirus
(sars-cov2). Science, 368, eabb3221.

[170] Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2018). Geoman: Multi-level attention networks
for geo-sensory time series prediction. IJCAI, (pp. 3428–3434).

[171] Lin, C.-T. (1974). Structural controllability. IEEE Transactions on Automatic Control,
19(3), 201–208.

[172] Lindgren, A., Doria, A., Davies, E., & Grasic, S. (2012). RFC 6693: Probabilistic
Routing Protocol for Intermittently Connected Networks. IETF NetworkWorking
Group.

[173] Liu, D. & Chen, X. (2011). Rumor propagation in online social networks like twitter:
A simulation study. Multimedia Information Networking and Security (MINES)
Third International Conference.

[174] Liu, Q.-H., Ajelli, M., Aleta, A., Merler, S., Moreno, Y., & Vespignani, A. (2018). Mea-
surability of the epidemic reproduction number in data-driven contact networks. Pro-
ceedings of the National Academy of Sciences, 115, 201811115.

[175] Liu, X. T., Firoz, J., Aksoy, S., Amburg, I., Lumsdaine, A., Joslyn, C., Praggastis, B., &
Gebremedhin, A. H. (2022). High-order line graphs of non-uniform hypergraphs: Al-
gorithms, applications, and experimental analysis. In 2022 IEEE International Parallel
and Distributed Processing Symposium (IPDPS) (pp. 784–794). Los Alamitos, CA,
USA: IEEE Computer Society.

263

[176] Liu, Y.-Y., Slotine, J.-J., & Barabási, A.-L. (2011). Controllability of complex networks.
Nature, 473, 167–173.

[177] Lloyd-Smith, J., Schreiber, S., Kopp, P., & Getz, W. (2005). Superspreading and the
effect of individual variation on disease emergence. Nature, 438, 355–9.

[178] LRO orbit (2020). Pgda - 50,000 lro orbits. https://pgda.gsfc.nasa.gov/products/
77.

[179] Lucey, P., Bialkowski, A., Carr, P., Morgan, S., Matthews, I., & Sheikh, Y. (2013). Rep-
resenting and discovering adversarial team behaviors using player roles. Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
(pp. 2706–2713).

[180] Lyapunov, A. M. (1992). The general problem of the stability of motion. International
Journal of Control, 55(3), 531–534.

[181] Ma, Q., Liu, J., Liu, Q., Kang, L., Liu, R., Jing, W., Yu, W., & Liu, M. (2021). Global
percentage of asymptomatic sars-cov-2 infections among the tested population and
individuals with confirmed covid-19 diagnosis: A systematic review and meta-analysis.
JAMANetwork Open, 4, e2137257.

[182] Ma, W., Wang, L., Ruzzo, W. L., & Noble, W. S. (2018). Deepgs: Predicting pheno-
types from genotypes using deep learning. Bioinformatics, 34(17), i658–i665.

[183] Maclagan, D. & Sturmfels, B. (2015). Introduction to Tropical Geometry, volume 161 of
Graduate Studies inMathematics. AmericanMathematical Society, Providence, RI.

[184] Magistretti, E., Kong, J., Lee, U., Gerla, M., Bellavista, P., & Corradi, A. (2007). A
mobile delay-tolerant approach to long-term energy-efficient underwater sensor net-
working. In 2007 IEEEWireless Communications and Networking Conference (pp.
2866–2871).: IEEE.

[185] Man, H. (2017). DefiningModern NBA Player Positions - ApplyingMachine Learn-
ing to Uncover Functional Roles in Basketball. Medium.com.

[186] Mansourbeigi, S. M. (2018). Sheaf theory as a mathematical foundation for distributed
applications involving heterogeneous data sets. In 2018 32nd International Conference
on Advanced Information Networking and ApplicationsWorkshops (WAINA) (pp. 28–
33).: IEEE.

[187] Mantegna, R. N. (1999). Hierarchical structure in financial markets. The European
Physical Journal B, 11(1), 193–197.

[188] Mars, K. (2019). Gateway. https://www.nasa.gov/gateway.

[189] Martin, J. L. (2003). Geometry of graph varieties. Transactions of the AmericanMathe-
matical Society, 355, 4151–4169.

[190] Mcauley, J. & Leskovec, J. (2014). Discovering social circles in ego networks. ACM
Trans. Knowl. Discov. Data, 8(1), 4:1–4:28.

264

https://pgda.gsfc.nasa.gov/products/77
https://pgda.gsfc.nasa.gov/products/77
https://www.nasa.gov/gateway

[191] McDowell, J. (2021). Starlink statistics.

[192] Mertzios, G. B., Michail, O., & Spirakis, P. G. (2015). Temporal network optimization
subject to connectivity constraints. CoRR, abs/1502.04382.

[193] Messaoudi, A., Elkamel, R., Helali, A., & Bouallegue, R. (2017). Cross-layer based
routing protocol for wireless sensor networks using a fuzzy logic module. In 2017 13th
InternationalWireless Communications andMobile Computing Conference (IWCMC)
(pp. 764–769).

[194] Michail, O. (2015). An introduction to temporal graphs: An algorithmic perspective.
CoRR, abs/1503.00278.

[195] Mohanta, N. (2021). Howmany satellites are orbiting the earth in 2021?

[196] Monaco, J. & Anderson, R. (1994). Tai’s Formula Is the Trapezoidal Rule. Diabetes
Care, 17(10), 1224–1225.

[197] Moreno, Y., Nekovee, M., & Pacheco, A. (2004). Dynamics of rumoring spread in
complex networks. Physics Review E, 69.

[198] Morozov, D. (2017). Dionysus 2. https://mrzv.org/software/dionysus2/.

[199] Morris, B. T. & Trivedi, M. M. (2008). A survey of vision-based trajectory learning
and analysis for surveillance. IEEE Transactions on Circuits and Systems for Video
Technology, 18(8), 1114–1127.

[200] Mossel, E., Neeman, J., & Tamuz, O. (2014). Majority dynamics and aggregation of
information in social networks. Autonomous Agents andMulti-Agent Systems, 28(3),
408–429.

[201] Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., Massari, M.,
Salmaso, S., Tomba, G. S., Wallinga, J., Heijne, J., Sadkowska-Todys, M., Rosinska, M.,
& Edmunds, W. J. (2008). Social contacts and mixing patterns relevant to the spread of
infectious diseases. PLoSMed, 5(3), e74.

[202] Motta, F., Tralie, C., Bedini, R., Bini, F., Bini, G., Eramian, H., Gameiro, M., Haase, S.,
Haddox, H., Harer, J., Leiby, N., Marinozzi, F., Novotney, S., Rocklin, G., Singer, J.,
Strickland, D., & Vaughn, M. (2019). Hyperparameter optimization of topological fea-
tures for machine learning applications. In 2019 18th IEEE International Conference
OnMachine Learning And Applications (ICMLA) (pp. 1107–1114).

[203] Motter, A. E., Myers, S. A., Anghel, M., & Nishikawa, T. (2013). Spontaneous syn-
chrony in power-grid networks. Nature Physics, 9(3), 191–197.

[204] Moy, M., Cardona, R., Green, R., Cleveland, J., Hylton, A., & Short, R. (2020). Path
optimization sheaves.

[205] Moy, M., Hylton, A., & Short, R. (2022). An alternate pathfinding algorithm for
contact graph routing. in preparation.

265

https://mrzv.org/software/dionysus2/

[206] Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J.-P. (2010). Com-
munity structure in time-dependent, multiscale, and multiplex networks. Science,
328(5980), 876–878.

[207] Muldoon, M. (2020). Tropical arithmetic and shortest paths.

[208] Murphy, D. V., Kansky, J. E., Grein, M. E., Schulein, R. T., Willis, M. M., & Lafon,
R. E. (2014). LLCD operations using the Lunar LasercomGround Terminal. In H.
Hemmati & D.M. Boroson (Eds.), Free-Space Laser Communication and Atmospheric
Propagation XXVI, volume 8971 (pp. 250 – 256).: International Society for Optics
and Photonics SPIE.

[209] NASA (2019). https://www1.grc.nasa.gov/space/scan/scas/scenic/.

[210] NASA (2020). Delay/disruption tolerant networking.

[211] Natarajan, S., Kunapuli, G., Judah, K., Tadepalli, P., Kersting, K., & Shavlik, J. (2010).
Multi-agent inverse reinforcement learning. Proceedings - 9th International Conference
onMachine Learning and Applications, ICMLA 2010, 10(1), 395–400.

[212] Newman, M. E. J. (2018). Networks an introduction. Oxford University Press.

[213] Nishiura, H., Kobayashi, T., Suzuki, A., Jung, S.-M., Hayashi, K., Kinoshita, R., Yang,
Y., Yuan, B., Akhmetzhanov, A., Linton, N., &Miyama, T. (2020). Estimation of the
asymptomatic ratio of novel coronavirus infections (covid-19). International Journal of
Infectious Diseases, 94.

[214] Nogrady, B. (2020). What the data say about asymptomatic covid infections. Nature,
587, 534–535.

[215] Ntareme, H., Zennaro, M., & Pehrson, B. (2011). Delay tolerant network on smart-
phones: Applications for communication challenged areas. In Proceedings of the 3rd
Extreme Conference on Communication: The Amazon Expedition (pp.1̃4).: ACM.

[216] Oh, O., Agrawal, M., & Rao, H. (2013). Community intelligence and social media
services: A rumor theoretic analysis of tweets during social crises. MIS Quarterly,
37(2), 407–426.

[217] Olfati-Saber, R. &Murray, R. (2004). Consensus problems in networks of agents with
switching topology and time-delays. IEEE Transactions on Automatic Control, 49(9),
1520–1533.

[218] OpenAI (2023). GPT-4: A large-scale generative language model. https://openai.
com/research/gpt-4.

[219] Palsson, B. �. (2015). Systems Biology: Constraint-based Reconstruction and Analysis.
Cambridge University Press.

[220] Parisi, G. I., Kemény, Z., Fülöp, G., & Erdős, G. (2019). Graph neural networks
for the prediction of area-specific properties in neuronal networks. arXiv preprint
arXiv:1903.03242.

266

https://www1.grc.nasa.gov/space/scan/scas/scenic/
https://openai.com/research/gpt-4
https://openai.com/research/gpt-4

[221] Passos, P., Davids, K., Araújo, D., Paz, N., Minguéns, J., &Mendes, J. (2011). Net-
works as a novel tool for studying team ball sports as complex social systems. Journal of
Science andMedicine in Sport, 14(2), 170–176.

[222] Pastor-Satorras, R., Castellano, C., VanMieghem, P., & Vespignani, A. (2015). Epi-
demic processes in complex networks. Rev. Mod. Phys., 87, 925–979.

[223] Pastor-Satorras, R. & Vespignani, A. (2001). Epidemic spreading in scale-free networks.
Phys. Rev. Lett., 86, 3200–3203.

[224] Patania, A., Petri, G., & Vaccarino, F. (2017). The shape of collaborations. PLOS ONE,
12, e0176318.

[225] Pecora, L. M. & Carroll, T. L. (1998). Master stability functions for synchronized
coupled systems. Phys. Rev. Lett., 80, 2109–2112.

[226] Peixoto, T. P. (2014). The graph-tool python library. figshare.

[227] Pellis, L., Ball, F., & Trapman, P. (2012). Reproduction numbers for epidemic models
with households and other social structures. i. definition and calculation of r0. Mathe-
matical Biosciences, 235(1), 85–97.

[228] Pellis, L., Spencer, S., & House, T. (2015). Real-time growth rate for general stochastic
sir epidemics on unclustered networks. Mathematical Biosciences, 265, 65–81.

[229] Petri, G., Expert, P., Turkheimer, F., Carhart-Harris, R., Nutt, D., Hellyer, P. J., &
Vaccarino, F. (2013). Homological scaffolds of brain functional networks. J. R. Soc.
Interface, 10, 20130512.

[230] Pittel, B. (1987). On spreading a rumor. SIAM Journal on AppliedMathematics, 47(1),
213–223.

[231] Poletti, P., Tirani, M., Cereda, D., Trentini, F., Guzzetta, G., Sabatino, G., Marziano,
V., Castrofino, A., Grosso, F., Del Castillo, G., Piccarreta, R., Andreassi, A., Melegaro,
A., Gramegna, M., Ajelli, M., Merler, S., & Force, A. L. C.-. T. (2021). Association
of AgeWith Likelihood of Developing Symptoms and Critical Disease Among Close
Contacts Exposed to Patients With Confirmed SARS-CoV-2 Infection in Italy. JAMA
Network Open, 4(3), e211085–e211085.

[232] Popa, A., Genger, J.-W., Nicholson, M., Penz, T., Schmid, D., Aberle, S., Agerer, B.,
Lercher, A., Endler, L., Colaço, H., Smyth, M., Schuster, M., Grau, M., Martinez-
Jiménez, F., Pich, O., Borena, W., Pawelka, E., Keszei, Z., Senekowitsch, M., & Bergth-
aler, A. (2020). Genomic epidemiology of superspreading events in austria reveals
mutational dynamics and transmission properties of sars-cov-2. Science Translational
Medicine, 12, eabe2555.

[233] Ranshous, S., Harenberg, S., Sharma, C., Samatova, N. F., & Govindarajan, N. (2015).
Anomaly Detection in Dynamic Networks: A Survey. Technical report, North Carolina
State University.

[234] Richard, B. (1958). On a routing problem. Quart. Appl. Math, 16(1), 87–90.

267

[235] Rizzi, R., Reimherr, M., & Smirnov, S. (2016). Persistent homology of financial net-
works. J. Complex Networks, 5, 613.

[236] Robinson, M. (2014a). A sheaf-theoretic perspective on sampling.

[237] Robinson, M. (2014b). Topological Signal Processing. Mathematical Engineering.
Springer Berlin Heidelberg.

[238] Robinson, M. (2016). Modeling wireless network routing using sheaves. arXiv.

[239] Robinson, M. (2017). Sheaves are the canonical data structure for sensor integration.
Information Fusion, 36, 208–224.

[240] Robinson, M. (2018). Assignments to sheaves of pseudometric spaces. arXiv preprint
arXiv:1805.08927.

[241] Robinson, M. (2019). Hunting for foxes with sheaves. Notices of the AmericanMathe-
matical Society, 66, 661–676.

[242] Robinson, M., Capraro, C., & Praggastis, B. (2016). The pysheaf library.

[243] Rodriguez, L. (2014). Automorphism groups of simple graphs. https://www.whitman.
edu/Documents/Academics/Mathematics/2014/rodriglr.pdf.

[244] Rosenberg, M. S. (2009). Sequence Alignment: Methods, Models, Concepts, and Strate-
gies. University of California Press, 1 edition.

[245] Rudenko, A., Palmieri, L., Herman, M., Kitani, K. M., Gavrila, D. M., & Arras, K. O.
(2020). Human motion trajectory prediction: a survey. The International Journal of
Robotics Research, 39(8), 895–935.

[246] Rudin, W. (1953). Principles of Mathematical Analysis. McGraw-Hill, Inc.

[247] Rácz, M. Z. & Rigobon, D. E. (2022). Towards consensus: Reducing polarization by
perturbing social networks.

[248] Sanford, R., Gorji, S., Hafemann, L. G., Pourbabaee, B., & Javan, M. (2020). Group
activity detection from trajectory and video data in soccer. In 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern RecognitionWorkshops (CVPRW) (pp. 3932–
3940). Los Alamitos, CA, USA: IEEE Computer Society.

[249] Schildt, S., Morgenroth, J., Pöttner, W.-B., &Wolf, L. (2011). Ibr-dtn: A lightweight,
modular and highly portable bundle protocol implementation. Electronic Communica-
tions of the EASST, 37.

[250] Schuette, C. &Metzner, P. (2009). Markov Chains and Jump Processes: An Introduc-
tion toMarkov Chains and Jump Processes on Countable State Spaces. Freie Universit ̈at
Berlin.

[251] Scott, K. & Burleigh, S. (2007). RFC 5050, Bundle Protocol Specification. IETF
NetworkWorking Group.

268

https://www.whitman.edu/Documents/Academics/Mathematics/2014/rodriglr.pdf
https://www.whitman.edu/Documents/Academics/Mathematics/2014/rodriglr.pdf

[252] Scoville, N. A. (2019). Discrete Morse Theory. AmericanMathematical Society.

[253] Segui, J., Jennings, E., & Burleigh, S. (2011). Enhancing contact graph routing for
delay tolerant space networking. In 2011 IEEE Global Telecommunications Conference -
GLOBECOM 2011 (pp. 1–6).

[254] Sehgal, R. & Peyravi, H. (2015). Delay tolerant networks modeling and analysis. In
Proceedings of the 30th International Conference on Computers and Their Applications,
CATA 2015 (pp. 231–236).

[255] Seo, Y., Defferrard, M., Vandergheynst, P., & Bresson, X. (2018). Structured sequence
modeling with graph convolutional recurrent networks. InNeurIPS (pp. 8468–8478).

[256] Shang, W., Kang, L., Cao, G., Wang, Y., Gao, P., Liu, J., & Liu, M. (2022). Percentage
of asymptomatic infections among sars-cov-2 omicron variant-positive individuals: A
systematic review and meta-analysis. Vaccines, 10(7).

[257] Shea, S. & Baker, C. (2015). Preliminary investigation into defensive
stretch. http://www.basketballanalyticsbook.com/2015/09/14/
preliminary-investigation-into-defensive-stretch.

[258] Short, R., Green, R., Moy, M., & Story, B. (2021a). What Type of Graph is a Contact
Graph? Technical MemorandumUpcoming, NASA, Glenn Research Center, Cleve-
land OH 44135, USA.

[259] Short, R., Hylton, A., Cardona, R., Green, R., Bainbridge, G., Moy, M., & Cleveland,
J. (2021b). Towards sheaf theoretic analyses for delay tolerant networking. In 2021
IEEE Aerospace Conference (50100) (pp. 1–9).

[260] Simonson, D. V. (2022). Mathematical Theory of Opinion Dynamics with Applications.
PhD thesis, University of California, Irvine.

[261] Singh, G., Mémoli, F., & Carlsson, G. (2007). Topological methods for the analysis of
high-dimensional data sets and 3d object recognition. Int. J. Comput. Geom. Appl., 22,
189.

[262] Smith, A. (2014). 6 new facts about facebook. Pew Research Center.

[263] Snijders, T. A., van de Bunt, G. G., & Steglich, C. E. (2010a). Introduction to stochas-
tic actor-based models for network dynamics. Social Networks, 32(1), 44–60.

[264] Snijders, T. A., van de Bunt, G. G., & Steglich, C. E. (2010b). Introduction to stochas-
tic actor-based models for network dynamics. Social Networks, 32(1), 44–60. Dynam-
ics of Social Networks.

[265] Spirent (2016). TCPNetwork Latency and Throughput. Technical report, Spirent.

[266] Stallmann, M. F. (2022). The 7/5 bridges of königsberg/kaliningrad. https://docs.
google.com/document/d/1sj-O79i8O2ult7C-CB_YwpX9SRYSmb1ext_q3iEKcKY.

269

http://www.basketballanalyticsbook.com/2015/09/14/preliminary-investigation-into-defensive-stretch
http://www.basketballanalyticsbook.com/2015/09/14/preliminary-investigation-into-defensive-stretch
https://docs.google.com/document/d/1sj-O79i8O2ult7C-CB_YwpX9SRYSmb1ext_q3iEKcKY
https://docs.google.com/document/d/1sj-O79i8O2ult7C-CB_YwpX9SRYSmb1ext_q3iEKcKY

[267] Stodden, D. & Galasso, G. (1995). Space system visualization and analysis using the
satellite orbit analysis program (soap). In 1995 IEEE Aerospace Applications Conference.
Proceedings, volume 1 (pp. 369–387 vol.1).

[268] Subramanian, R., He, Q., & Pascual, M. (2021). Quantifying asymptomatic infec-
tion and transmission of covid-19 in new york city using observed cases, serology, and
testing capacity. Proceedings of the National Academy of Sciences, 118, e2019716118.

[269] Sun, K., Wang, W., Gao, L., Wang, Y., Luo, K., Ren, L., Zhan, Z., Chen, X., Zhao, S.,
Huang, Y., Sun, Q., Liu, Z., Litvinova, M., Vespignani, A., Ajelli, M., Viboud, C., &
Yu, H. (2020). Transmission heterogeneities, kinetics, and controllability of sars-cov-2.
Science, 371, eabe2424.

[270] Swan, R. G. (1964). The Theory of Sheaves. University of Chicago Press.

[271] Swinski, J.-P. & et alii (2018). bplib. https://github.com/nasa/bplib.

[272] Tai, M. M. (1994). A mathematical model for the determination of total area under
glucose tolerance and other metabolic curves. Diabetes Care, 17(2), 152––154.

[273] Tang, J. P., Lou, T., & Kleinberg, J. (2010). Analyzing and modeling dynamic processes
in complex networks. Proceedings of the 19th International Conference onWorldWide
Web, (pp. 1201–1202).

[274] Tang, R. &Müller, H.-G. (2008). Pairwise curve synchronization for functional data.
Biometrika, 95(4), 875–889.

[275] Tennison, B. R. (1975). Sheaf Theory. LondonMathematical Society Lecture Note
Series. Cambridge University Press.

[276] The COVID Tracking Project (2021). Daily data on the covid-19 pandemic for the us
and individual states (dataset). https://api.covidtracking.com/v1/states/daily.
csv. Accessed October 9, 2022.

[277] The New York Times (2022). Coronavirus (covid-19) data in the united states
(dataset). https://github.com/nytimes/covid-19-data. Accessed October 9, 2022.

[278] Thurston, H. A. (1956). The Number System. Blackie & Son, Ltd.

[279] Togelius, J. (2018). IEEE Transactions on Games: A Leading Journal for Games Re-
search. IEEE Transactions on Games, 10(1), 1–2.

[280] Tralie, C. J., Smith, A., Borggren, N., Hineman, J., Bendich, P., Zulch, P., & Harer, J.
(2018). Geometric cross-modal comparison of heterogeneous sensor data. In 2018
IEEE Aerospace Conference (pp. 1–10).

[281] Tripathy, R., Bagchi, A., &Metha, S. (2010). A study of rumor control stategies on
social networks. CIKM ’10 Proceedings of the 19th ACM international conference on
information and Knowledge manegment, (pp. 1817–1820).

270

https://github.com/nasa/bplib
https://api.covidtracking.com/v1/states/daily.csv
https://api.covidtracking.com/v1/states/daily.csv
https://github.com/nytimes/covid-19-data

[282] Trivedi, R., Dai, H., Wang, Y., & Song, L. (2019). Representation learning over dy-
namic graphs. In ICLR.

[283] United States Census Bureau (2015a). 2011–2015 5-year acs commuting flows
(dataset). https://www.census.gov/data/tables/2015/demo/metro-micro/
commuting-flows-2015.html. Accessed October 9, 2022.

[284] United States Census Bureau (2015b). 2011–2015 acs 5-year estimates (dataset).
https://www.census.gov/programs-surveys/acs/technical-documentation/
table-and-geography-changes/2015/5-year.html. Accessed October 9, 2022.

[285] van den Boom, T. (June 2018). Model predictive scheduling of semi-cyclic discrete-
even t systems using switching max-plus linear models.

[286] Van Heesch, M., Wissink, P. L. J., Ranji, R., Nobakht, M., &Hartog, F. D. (2020).
Combining cooperative with non-cooperative game theory to model wi-fi congestion
in apartment blocks. IEEE Access, 8, 64603–64616.

[287] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L. u., & Polosukhin, I. (2017). Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in
Neural Information Processing Systems, volume 30 (pp. 5998–6008).: Curran Asso-
ciates, Inc.

[288] Vazintari, A., Vlachou, C., & Cottis, P. G. (2013). Network coding for overhead reduc-
tion in delay tolerant networks. Wireless Personal Communications, 72(4), 2653–2671.

[289] Švejda, M. & Čechura, T. (2015). Interpolation method for robot trajectory planning.
In 2015 20th International Conference on Process Control (PC) (pp. 406–411).

[290] Wall, M. (2019). Spacex’s starlink constellation could swell by 30,000 more satellites.

[291] Wang, T.-E., Lin, C.-Y., King, C.-C., & Lee, W.-C. (2010). Estimating pathogen-
specific asymptomatic ratios. Epidemiology (Cambridge, Mass.), 21, 726–8.

[292] Wang, Z., Zhao, C., Di, Z., &Wang, W.-X. (2016). Predicting the dynamics of network
connectivity. Scientific Reports, 6, 24634.

[293] Wason, P. C. (1960). On the failure to eliminate hypotheses in a conceptual task. Quar-
terly Journal of Experimental Psychology, 12(3), 129–140.

[294] Weiss, M. A. (2011). Data Structures and Algorithm Analysis in Java. Pearson, 3
edition.

[295] Wikipedia contributors (2022). Katz centrality —Wikipedia, the free encyclopedia.
[Online; accessed 11-April-2023].

[296] Wikipedia contributors (2023). Eigenvector centrality —Wikipedia, the free encyclo-
pedia. [Online; accessed 11-April-2023].

271

https://www.census.gov/data/tables/2015/demo/metro-micro/commuting-flows-2015.html
https://www.census.gov/data/tables/2015/demo/metro-micro/commuting-flows-2015.html
https://www.census.gov/programs-surveys/acs/technical-documentation/table-and-geography-changes/2015/5-year.html
https://www.census.gov/programs-surveys/acs/technical-documentation/table-and-geography-changes/2015/5-year.html

[297] Wolfram, S. (1983). Statistical mechanics of cellular automata. Rev. Mod. Phys., 55,
601–644.

[298] Wood, L., Ivancic, W., Eddy, W., Stewart, D., Northam, J., Jackson, C., Da, A., &
Da Silva Curiel, A. (2008). Use of the delay-tolerant networking bundle protocol from
space. In International Astronautical Congress, volume 5 (pp. 3123–3133).

[299] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2020). A comprehensive
survey on graph neural networks. IEEE Trans. Pattern Anal. Mach. Intell.

[300] Xia, K. (2015). Persistent homology analysis of protein structure, flexibility, and fold-
ing. Physica A, 436, 1.

[301] Xu, K., Hu, Y., Leskovec, J., & Jegelka, S. (2019). Temporal graph attention networks
for dynamic graphs. In ICLR.

[302] Yan, S., Xiong, Y., & Lin, D. (2018). Spatial temporal graph convolutional networks for
skeleton-based action recognition. In AAAI (pp. 3397–3404).

[303] Yang, F., Chen, L., Zhou, F., Gao, Y., & Cao, W. (2020). Relational State-Space Model
for Stochastic Multi-Object Systems. International Conference on Learning Representa-
tions.

[304] Yang, J., McAuley, J., & Leskovec, J. (2016). Community detection in networks with
node attributes. InKnowledge Discovery in Databases: PKDD 2016 (pp. 243–260).:
Springer.

[305] Yeh, R. A., Schwing, A. G., Huang, J., &Murphy, K. (2019). Diverse generation for
multi-agent sports games. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2019-June, 4605–4614.

[306] You, J., Ying, R., Ren, X., Hamilton, W. L., & Leskovec, J. (2018). Graphrnn: Gener-
ating realistic graphs with deep auto-regressive models. InNeurIPS (pp. 5708–5718).

[307] Yue, Y., Lucey, P., Carr, P., Bialkowski, A., &Matthews, I. (2014). Learning Fine-
Grained Spatial Models for Dynamic Sports Play Prediction. Proceedings - IEEE Inter-
national Conference on DataMining, ICDM, 2015-Janua(January), 670–679.

[308] Zhan, X.-X., Liu, C., Zhou, G., Zhang, Z., Sun, G.-Q., Zhu, J., & Jin, Z. (2018). Cou-
pling dynamics of epidemic spreading and information diffusion on complex networks.
AppliedMathematics and Computation, 332.

[309] Zhang, L. & Fan, S. (2019). Dynamic stock market prediction via graph neural net-
works. arXiv preprint arXiv:1912.12220.

[310] Zhang, M. & Chen, Y. (2018). Link prediction based on graph neural networks. IEEE
Trans. Knowl. Data Eng., 30(6), 1212–1225.

[311] Zhang, Q., Jin, Z., Zhang, Z., & Shu, Y. (2009). Network coding for applications in the
delay tolerant network (dtn). 2009 Fifth International Conference onMobile Ad-hoc
and Sensor Networks, (pp. 376–380).

272

[312] Zhang, X., Sun, G., Zhu, Y., Ma, J., & Jin, Z. (2013). Epidemic dynamics on semi-
directed complex networks. Mathematical Biosciences, 246(2), 242–251.

[313] Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., & Li, H. (2019a). T-
gcn: A temporal graph convolutional network for traffic prediction. IEEE Trans. Intell.
Transp. Syst., 21(3), 1012–1024.

[314] Zhao, L., Wang, J., Chen, Y., Wang, Q., Cheng, J., & Cui, H. (2012). Sihr rumor
spreading model in social networks. Physica A: StatisticalMechanics and its Applica-
tions, 391(7), 2444–2453.

[315] Zhao, L., Wang, Z., Cheng, J., Chen, Y., Wang, J., & Huang, W. (2011). Rumor
spreading model with consideration of forgetting mechanism: A case of online blog-
ging livejournal. Physica A: StatisticalMechanics and its Applications, 390(13), 2619–
2625.

[316] Zhao, Y., Borovikov, I., Rupert, J., Somers, C., & Beirami, A. (2019b). OnMulti-
Agent Learning in Team Sports Games. arXiv.

[317] Zhou, J., Liu, Z., & Li, B. (2007). Influence of network structure on rumor propaga-
tion. Physics Letters A, 368, 458–463.

[318] Zhou, L., Yang, Y., Ren, X., Wu, F., & Zhuang, Y. (2020). Dynamic network em-
bedding by modeling triadic closure process. IEEE Trans. Knowl. Data Eng., 32(6),
1212–1225.

[319] Zhu, X., Wang, Y., Chen, L., & Huang, X. (2020). Graph neural networks for tempo-
ral recommendations. arXiv preprint arXiv:2007.06802.

[320] Zita, C. (2019). Redefining Positions and Players In Todays NBA, UsingMachine
Learning. The Sports Scientist.

[321] Zook, A. & Riedl, M. O. (2018). Learning HowDesign Choices Impact Gameplay
Behavior. IEEE Transactions on Games, 11(1), 25–35.

[322] Zweck, J. (2016). Analysis of methods used to reconstruct the flight path of malaysia
airlines flight 370. SIAMReview, 58(3), 555–574.

273

T
his workwas typeset using
LATEX, originally developed by Leslie

Lamport and based on Donald Knuth’s
TEX. This dissertation was written accord-
ing to the requirements outlined by the
Seeley G. MuddManuscript Library at
Princeton University in Princeton, NJ,
USA. The above illustration was gener-
ated via stable diffusion using OpenAI’s
Dalle·2 model. A template to create a
Ph.D. dissertation with this look& feel
has been released under the permissive
agpl license and can be found online at
https://github.com/suchow/Dissertate or
from its lead author, Jordan Suchow.

274

https://github.com/suchow/Dissertate

	Abstract
	I Background
	Overview
	Euler and the Origins of Graph Theory
	Moving Bridges
	Key Themes and Contributions

	Mathematical Introduction
	Graphs and their Variations
	Applied Topology & Geometry
	Basic Graph Operations

	Brief Survey
	Graph Dynamical Systems
	Applied Topology
	Machine Learning with Graph Neural Networks
	Dynamic Networks So Far

	II Main Results
	Tracking Virality in Connected Populations
	Information as a Virus
	Estimating Asymptomatic Viral Spread
	Key Takeaways

	Fast-Moving Natural Networks
	Basketball through Applied Topology
	Basketball through Geometry and Machine Learning
	Lessons on Dynamism

	Final Frontier: Inspired by Space
	Temporal Graphs in Lunar Networks
	Routing Problems and Dynamic Graphs
	Final Notes

	III Looking Forward
	Conclusion
	Overview of Results
	The Bridges of Kaliningrad

	Future Directions
	Theoretical Considerations
	Connections to Related Disciplines
	Application Areas of Interest

	Appendix Code
	Viral Networks
	Basketball
	Code in Space
	Exploratory Code

	References

