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Abstract— Delay Tolerant Networking (DTN) is the standard
approach to the networking of space systems with the goal
of supporting the Solar System Internet (SSI). Current space
networks have a small scale and often depend on rigorously
scheduled (pre-determined) contact opportunities; this manual
approach inhibits scalability. The goal of this paper is to recast
these scheduling problems in order to apply the optimization
machinery of tropical geometry.

Contact opportunities in space are dependent on such factors
as orbital mechanics and asset availability, which induce time-
varying connectivity; indeed, end-to-end connectivity might
never occur. Routing optimization within this structure is clas-
sically difficult and typically depends on Dijkstra’s algorithm
as applied to contact graphs. Alternatively, we follow the suc-
cesses of tropical geometry in train schedule optimization, job
assignments, and even traditional networking, by extending this
approach to this more general (i.e. disconnected) problem space.

These successes imply tropical geometry provides a useful
framework in the context of DTNs, starting with applications to
queuing theory and long-haul links. Recently, tropical geometry
has been applied to parametric path optimization on graphs
with variable edge weights. In this work, we extend these ad-
vances to account for the problem of routing in a space network,
and find that tropical geometry is well-suited to the challenges
offered by this new setting, including contact schedules featuring
probabilities. Our approach leverages the combinatorial nature
of the problem to give feasible shortest path trees in the presence
of variable channel conditions and latency, evolving topologies,
and uncertainty inherent in space routing.

We discuss our tropical approach to DTN for two Python im-
plementations, a Verilog Tropical ALU implementation, tropical
frameworks for other parametric graph problems, and solution
stability. Lastly, a future work section is included to illuminate
the path ahead.

1. INTRODUCTION
One major complication associated with space networking is
that the links between assets are constantly changing. Both in
terms of links literally coming up and down, but also in terms
of channel characteristics. One such characteristic is latency,
which we can think of as the time it takes for information
to leave the transmitter and arrive at the receiver. In space,
this latency mainly arises from light travel time, which can
be significant (as many as tens of minutes between Earth and
Mars).

In addition, the main form of transmissions being electro-
magnetic waves means that a space network will suffer due
to the inverse-square law. This law basically dictates that
the power received is inversely proportional to the square of
the distance to the transmitter. From an information theoretic

perspective, this severely limits the data rate one could hope
to achieve based on the physics of light alone, let alone any
complications with modulations or electronics. Note that
both latency and the received power depend on distance, a
quantity which is constantly changing for assets in space.
Section 2 details an algorithm and two implementations that
account for these limitations by casting them as a parametric
shortest path problem.

Below, in Figure 1, we see a small example of a space
network between the Earth and some satellites. Despite the
relatively ‘small’ size - there are only six assets - the graph is
highly dependent on orbital mechanics and hence time. This
emphasizes the need for rigorous approaches to parametric
graphs in space communications.

Figure 1: Example space network

Parametric graphs are modeled as graphs with variable
weights, see Definition 3.1. These weights could correspond
to distance (in light-seconds) or bit rate (in Mbps) for appli-
cations to DTN. Regardless of their interpretation, one aims
to find optimal paths as a function of these weight parameters
xi, which themselves could depend on time. The complexity
of this problem is reflected in a partition of parameter space,
which depends on the topology of the network as well as
given weights. Over each region in this partition, optimal
routing is determined using a shortest path tree in the graph,
but different regions may have the same or different trees.
Generating these regions and trees is accomplished in the
tropical setting using Joswig’s algorithm [1], which is re-
viewed below. For a concrete example of a parametric graph,
consider Figure 2. Depending on the value of x, different
routing decisions will be used and a complete classification20
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of these routing decisions, using tropical geometry, will be
provided later in the paper; see Figure 3.

Figure 2: Example parametric graph.

Another application of these methods comes from a recent
analysis of the current standard of DTN routing, contact
graph routing[2]. Originally, it was thought that contact
graphs were acyclic, but it has recently been shown that they
can in fact feature routing loops [3]. Hence, one feature of
our analysis is the ability to track how topological features
- such as loops - both arise and disappear as the underlying
parameters vary. This motivates a more general parametric
approach.

To summarize our contributions, we initiate a more general
parametric and tropical geometric approach to time-evolving
graphs with variable edge characterizations. We provide
a slight generalization of the tropically inspired method of
Joswig [1] for solving the parametric shortest path problem
and prove two novel implementations of this algorithm: one
in Python and one using a Verilog 32-bit tropical arithmetic
logic unit (ALU). Key to our approach is the extraction of
regions of parameter space where certain shortest path trees
are optimal. By understanding these, one could design in
advance what the routing tables should like for portions of
a Solar System Internet. We then move beyond the tropical
setting of Joswig to provide a more general mathematical
framework for other parametric graph problems and char-
acterize stability of solutions to these in a novel way. We
anticipate that these methods will be highly applicable to
DTN as the characteristics of these networks include not
only time varying capacities, but also other time varying
summaries of note, such as centrality.

A Brief View of the Tropics

Before we proceed with our main line of analysis, we offer
a quick summary of tropical geometry and its application to
graph theory. Those interested in a deeper text are referred to
[4]; there is also a technical memorandum published by the
authors that takes a more leisurely pace [5].

Tropical geometry, in broad strokes, can be thought of as a
piecewise-linear version of algebraic geometry, which studies
solution sets (i.e. zero sets) of systems of polynomials. The
polyhedral view of tropical geometry allows one to phrase
things like optimization problems fairly easily, as we will see
in Section 2 and beyond.

Whereas ordinary geometry occurs over the ring of real
numbers R, tropical geometry occurs over the min-plus1

semiring T = R ∪ {∞} where the operations of addition

1One can define the max-plus semiring by instead including −∞ and

and multiplication are redefined as follows:

a⊕ b := min{a, b}

a⊗ b := a+ b

To illustrate how this works, we offer the following examples:

• 5⊕ 7 = 5,
• 5⊗ 7 = 12,
• a⊕b = a,
• a⊗b = ba,
• 5⊕∞ = 5, and
• 5⊗∞ =∞.

To see why a⊕b = a, note that a⊕b = min{a, . . . , a} = a,
as this is a “added” to itself b times. To understand a⊗b,
observe that for b ∈ Z≥0 we may view exponentiation as
repeated application of the ⊗ operation, b times. To extend
this definition to all integers, we note that a⊗−1 = −a since
this is the additive (tropical multiplication) inverse of a. For
b ∈ Q, we can observe that (a⊗

1
n )n = a so n(a⊗

1
n ) = a,

so a⊗
1
n =

1

n
a. Lastly, now that we can have rationals in our

exponent, we can perform a process known as completion to
get to our extended real values, but this is beyond the scope of
this paper. For those interested, see [6],[7],[8],[9], and [10].

Generalizing the rules of tropical arithmetic to tropical ma-
trices casts new light on classical lessons from graph theory.
Recall that associated to a (di)graph is the adjacency matrix
A, where Ai,j = 1 if there is an edge from vertex i to vertex
j, andAi,j = 0 otherwise. It is well known that taking the nth

power of the adjacency matrix enumerates walks from vertex
i to vertex j of length n.

Analogously, one can perform a similar process for a
weighted (di)graph in the tropical setting, where the entries in
the matrix are now the weights of the arcs between the edges.
Taking tropical powers of this weight matrix now calculates
the total weight of the shortest walk from vertex i to vertex j.
See [5][11] for a detailed explanation on this process, as well
as a proper definition of tropical matrix operations. These
observations have yielded fruitful insights in the study of train
schedules, robotics, and many other applications; see [12].

2. JOSWIG ALGORITHM GENERALIZATION
For this section, unless explicitly stated, we are working
with weighted, parametric digraphs, i.e. directed graphs
where some arcs have constant values associated with them
(weights), and some arcs have variables associated with
them (parameters). Further note that in [1], they work with
parametric digraphs satisfying an additional condition which
they call ‘separability’ which means that each parameter only
appears as part of one arc’s parameter expression. Figure 2
satisfies this separability property. For our work, we allow
our graphs to not have this quality so that we can eventually
substitute functions of time for our parameters. This is a
minor distinction, but it does limit the claims we can make
about our overall solution spaces at the end of our work.
Lastly, we assume that all parameter values and edge weights
are restricted to be non-negative, and that our graphs have

defining the⊕ operation as max instead. We will use the min-plus semiring
because in our optimization setting we wish to minimize path length.
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3a single sink (or source). These are typical assumptions
of Dijkstra’s algorithm, which is employed as a step in the
Joswig algorithm.

Definitions

In the sections that follow, we assume the reader has some
familiarity with topics covered in a typical data structures
course. For the reader who wishes to gain this background
knowledge, we refer to [13] and [14].

Let T be a spanning tree in a graph G. Define PT (v) as
the cost of the unique path from the source s to the vertex
v in T . Furthermore, define d(vw) as the cost of the arc
between v and w, with d(vw) = ∞ if there is no arc. For
a general path s = v1, v2, . . . , vn−1, vn = v, the cost is given
by summation, i.e.

P (v) =
n−1∑
i=1

d(vivi+1).

A parametric arc is an edge whose weight is given by a
variable. We are interested in graphs with (possibly) multiple
parametric arcs and their corresponding parametric shortest
path trees. For emphasis, we recall that we restrict ourselves
to non-negative edge weights for both constant and paramet-
ric arcs.

Now that we’ve defined some notation, we can describe how
one approaches parametric graphs like the one in Figure 2.
See Definition 3.1 for a formal definition of a parametric
graph.

Algorithm

The algorithm given in [1] can be summarized as follows:

1. Take a weakly connected digraph G with (variable) edge
parameters x1, . . . , xn, initialized to any non-negative values
α1, . . . , αn, fixing a source vertex s. Denote this initialized
graph G(α1, . . . , αn).
2. Perform Dijkstra’s algorithm on the initialized graph
G(α1, . . . , αn) to generate a shortest path tree T rooted at
s.
3. Now considering G with original (un-initialized) edge
parameters, iterate through each edge vw not in T as fol-
lows: consider PT (v) and d(vw) + PT (w). If they are
incomparable, add PT (v) ≤ d(vw) + PT (w) to the system
of inequalities associated with T . Then generate a new tree
T ′, obtained by removing the path in T to w and replacing it
with the path to w through v via vw. If T ′ is not already in
the list, and is also a shortest path tree, append T ′ to the list.
4. Repeat step 3 for each tree until no new trees are gener-
ated.

The result is a family of shortest path trees, along with
systems of inequalities associated to each tree that defines
the region of parameter space where that tree is the shortest
path tree. A visual representation of this output is shown in
Figure 32. This process of taking a parametric graph, iterating
through its paths, and generating trees along with inequalities
is the essence of the Joswig algorithm. This is in fact tropical
because the systems of inequalities can be viewed as (systems
of) tropical polynomials equations, an observation which is

2Although we include dashed lines to indicate edges from our original graph,
technically the shortest path tree only consists of the solid edges.

explored in [5]. Each shortest path tree T in the solution
family is encoded as a set of monomials which minimize a
tropical polynomial for a certain subset of parameter space,
which is defined by the inequalities associated to T. Some
trees will never be optimal for any value of the parameters,
which is reflected by the associated set of inequalities giving
an unfeasible solution set (i.e. bounding an empty region).

Implementations

The algorithm above was implemented3 previously by Ew-
genij Gawrilow in Polymake as an optimized extension of
Polymake 4.1. In an effort to make the implementation
more accessible and applicable to engineering problems, we
developed two object oriented implementations written in
Python with minimal dependencies. This not only makes it
easier to read and understand, but also makes things like field
programmable gate array (FPGA) implementations much
more feasible. Moreover, the implementation generalizes
the algorithm: while previous impementations required edge
functions to be linear, the algorithm implemented here was
modified to apply to arbitrary functions, such as sin(t).

To begin, we should first acknowledge the efficacy of the
naive solution: the naive solution here would be to just
sample points in the parameter space of the edge weights
and keep track of which sample points correspond to which
shortest path trees. However, without any good way to
pick samples, this severely limits the accuracy to which one
can approximate the boundaries between different regions.
Moreover, this approach doesn’t leverage the fact that the
regions in parameter space corresponding to a shortest path
tree are all convex: If the points x and y both yield the same
tree T , then any point on the line segment between x and y
must also correspond to T . This observation gives us a good
idea of how to start approximating solutions.

Our first implementation is a boundary approximation
method based on binary search, and utilizes convexity of
these regions in an essential way. The purpose of approximat-
ing is to verify our other implementation, but also eventually
the Polymake implementation. The problem with this method
is that it is inefficient in both memory and time, since it
requires sampling a large number of points. The advantage,
however, when compared to the naive solution, is that this
approximation can be tuned to arbitrary precision, limited by
floating point accuracy, among other things. So, while it may
not be practical for deployment in a space network, it will at
least be accurate enough to determine the validity of our more
efficient methods.

This method operates recursively. In one dimension, i.e. only
one edge weight is variable, the shortest path tree is found and
recorded for when the parameter is set to the minimum value
(e.g. 0). Then another tree is found for setting the parameter
to the sum of all constant weights (so ignoring parameters)
in the graph4. If they’re the same tree, then we only have one
shortest path tree feasible and are finished. If they’re not, then
one recursively binary searches between these left and right
bounds to find the boundary between the two regions, slowly
squeezing these bounds in. In the case that a sample lands
on a region with a shortest path tree not yet sampled, we will

3Link to implementation: https://polymake.org/extensions/
polytropes
4In one dimension, this is guaranteed to lie in the region extending off to
infinity since any path without the parametric arc, assuming such a path
exists, will be better than any path including the parametric arc. That is,
for any value of the parameter above this sum, you will still get the same
shortest path tree.
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Figure 3: Analytical solution of cell decomposition and associated shortest path trees corresponding to Figure 2. Results from
applying the Joswig algorithm described below. Each interval shows the values of parameter x for which each tree (T0, T1, T2)
optimal. Note that there is a fourth tree omitted, basically T0 but with the path to v1 going along the leftmost edge with weight

5. It is omitted because there are no values of x that make it optimal.

Figure 4: Example sequence of steps in the binary search.

now split the problem into two recursive binary searches, one
between the left bound and the sample point, and the other
between the sample point and the right bound. This process
is repeated until the recursion depth reaches the limit set by
the programmer. This recursion depth is what will ultimately
determine the accuracy of the approximation, and depths of 5
or 10 seem to suffice for most applications.

Here’s an example corresponding to Figure 4. The output of
this example from our implementation is given in Figure 5.

1. Initialize 5 the search with L = 0,R = 14 = 2+3+4+5,
and S = (L+R)/2 = 7.
2. Check containment of L, S, and R from step 1. Generate
sample S = 3.5 since L = 0 corresponds to T0 and R = 7
corresponds to T2.
3. Repeat above to generate sample S = 1.75.
4. Checking sample S = 1.75 reveals containment in the
region for T1, unique from T0 and T2 regions. Generate
two new samples for two new searches, one between step 3’s
L and S, and another between step 3’s S and R.

5In one dimension, we can ignore all parameter values above the sum of
all constant weights (i.e. not parameters). There could probably be tighter
bounds, and in some trivial cases, such as no constant weights, this is actually
too tight as it is.

...
n. After repeated iterations, end up with a reasonable approx-
imation of boundaries at 1 and 3.

Figure 5: Example output of binary (first) implementation
applied to Figure 2. Note that this agrees with the solution

given in Figure 3.

For two dimensions (i.e. two parametric edges), we essen-
tially repeat the one dimensional process outlined above on
a series of lines going through our region of interest. Since
we are working in two dimensions, we no longer have the
guarantee that regions are constant beyond the total weight
of the non-parametrized edges. We provide an example in
Figure 6 with parameters x and y. For this case, it is easiest
to just pick arbitrarily large values, say M , assuming one of
the boundaries isn’t y = x, and search along all lines between
(0, 0), (0,M), (M, 0), and (M,M). Then, picking a number
of sample points n, e.g. n = 5, one draws sets of 5 lines,
each set of lines drawn between a vertex and points along
one of the opposite edges. An example of this is shown in
Figure 7. The intuition here is that we are trying to avoid
sampling a line perfectly over a boundary, although this may
occur in some cases. Generically, our sample lines will go
through several regions to help ’detect’ as many boundaries
as possible, and this is one approach. The result of this two
dimensional binary search is shown in Figure 8.
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5

Figure 6: Example graph with two parameters. Note separa-
bility.

Figure 7: Lines for two parameter binary search, n = 5
sample lines, corresponding to Figure 6

Our second implementation6 is a modified version of the
algorithm described above and in [1]. It works by generating
a list of all paths possible in the graph, along with the total
cumulative weight along each path, as well as whether or
not there are variable edges along that path. For each path
not on the tree being considered, it solves for the boundary
between two regions. One region corresponds to the tree
with the original path. The other other region corresponds
to the tree with the new path. For example, consider Figure
3 which shows the tree T0. Fix v4 and v2 and consider the
two paths between them, one going through v3 with weight
x + 3, and one directly between v4 and v2 with weight 4.
We know the boundary between the region for T0 and the
region for T1 is exactly when x + 3 = 4, i.e. x = 1, since
we are fixing the other edges, namely the path going from

6Link to implementation: https://github.com/jacleveland/joswig

Figure 8: Example output of binary (first) implementation
applied to Figure 6.

v4 to v1 through v3. Lastly, we would find the boundary
between T1 and T2 by noting that the boundary between them
is exactly when x + 2 = 5, i.e. x = 3. For our example, in
Figure 3, since there is only one parameter, our boundaries
are fixed values. The output of this implementation applied
to the graph in Figure 2 is shown in Figure 9, which shows
that our boundaries between regions are at x = 1 and x = 3.
In two parameters, the boundaries between cells are lines.
The dashed lines between the regions in Figure 7 are such
boundaries.

Figure 9: Example output of our Joswig (second) implemen-
tation applied to Figure 2. Note that this agrees with the

solution given in Figure 3.

More generally, for a graph with d-dimensional parameter
space, these boundaries7 are d − 1 dimensional affine sub-
spaces of Rd. Assuming separability, i.e. all of the variable
edge weights are represented by unique xi, we know that
there will only be coefficients of ±1 or 0 in front of each
parameter, along with a constant representing the shifting

7Note that points on the boundary represent parameter values associated with
multiple trees that are equally optimal. One may convince themselves of this
fact by observing that in Figure 3, when x = 1, both T0 and T1 are optimal
because x+ 3 = 4 when x = 1.
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of the affine subspace.8 In essence, we are solving for this
constant, and the sign of the coefficient of each variable,
which will depend on which path each variable appears on,
if at all9.

Verilog Implementation

In addition to working on Python implementations, great
strides were also made in creating our Verilog implemen-
tation10 of a 32-bit tropical arithmetic logic unit (ALU).
This tropical ALU is capable of executing instructions for
the ⊕ and ⊗ as well as the logical AND and OR opera-
tions. The 32nd bit indicates the∞ of the tropical semiring,
i.e. 32’b1xxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx. The
arithmetic operations here represent the usual operations as
defined in §1. Note that for ⊗, overflowing results in finite
values for simplicity, as demonstrated by the waveform in
Figure 10. An alternative is to have ⊗ overflow to ∞ since
any value larger than 231 − 1 could be considered to be
∞. As a compromise, future revisions could include an
overflow mode that selects between overflowing normally and
overflowing to infinity.

3. PARAMETER SPACE DECOMPOSITIONS FOR
WEIGHTED GRAPHS

In this section, we discuss several natural mathematical
extensions of the framework introduced in [1]. First, we
discuss what happens when one changes the problem under
consideration from the single source shortest path problem
to other problems of interest for a weighted graph. Second,
we consider how the parameter space perspective allows us
to characterize some of these problems, even when they don’t
yield tropical formulations. One upshot of this section is the
ability to define a principled notion of stability of solutions to
these parametric problems. The results of this section are out-
side the purview of traditional tropical geometry, though the
perspective taken is heavily inspired by the tropical geometric
approach to parametric routing.

Tropical Graph Problems

To formally describe more general parametric problems on
graphs, we introduce some terminology:
Definition 3.1. LetG be a graph with n nodes V and k edges
E. Let E′ ⊂ E be a subset of edges of size m ≤ k, and
suppose that we assign to each e ∈ E′ an affine function in
the real variable xe, and all other edges s ∈ E \E′ a constant
weight. We call weighted graphs as defined above parametric
graphs. We refer to Rm, where m = |E′|, as the parameter
space of G, and identify each x ∈ Rm with a fixed choice of
parameter values on G.

For a fixed parametric graph G with m ≤ k parametric
edges, every point x in parameter space Rm corresponds to
a different choice of weights for G.

8Even if one didn’t have separability for the parametric graph, one could
force separability by a relabeling process where x on two different arcs
would be replaced by y and z, and the process would be performed on this
more general graph.
9It is important to note, however, that some of these inequalities will be
superfluous, if for example you have two parallel arcs (i.e. same source and
sink) with the same exact variables, but the constants of one path add up
to a smaller weight than the other. This issue can be solved by pruning the
graph to begin before performing the computations, or alternatively, applying
separability and treating the variables separately.
10Verilog implementation available here: https://github.com/
jacleveland/tropicalu.

Definition 3.2. A parametric problem P on a weighted graph
G with m parametric edges is described by the following:

• A set of discrete objects called the solution set J ;

• An assignment h : Rm → P(J ), whereP(J ) is the power
set of J .

Example 3.3. The parametric all-pairs shortest path problem
on a weighted graph G = (V,E) has as its solution the set of
all paths U where:

• For each x, y ∈ V , U contains a unique path pxy from x to
y;

• If pxy has a subpath from u to w, then puw is given by this
subpath.

The assignment h : Rm → J maps each weight vector to the
set(s)11 of lowest weight paths in J .

Example 3.4. The parameterized max-flow problem on a
weighted graph G with source vsrc and sink vsk has as its
solution set all graph cuts separating vsrc from vsk, i.e. the
set of all minimal sets of edges Q = {e1, e2, . . . , el} such
that when Q is removed from G, vsrc and vsk are in different
connected components of G. The assignment h : Rm → J
maps each weight vector to the minimal weight cut(s) in J .

Definition 3.5. Let G be a parameterized graph with m
parameterized edges. Let P be a problem onGwith a discrete
solution set J . Let h : Rm → J be the assignment function
for P . For each α ∈ J , let Uα := h−1(α) be the region in
Rm assigned to α. We say that UJ := {Uα | α ∈ J} be the
decomposition of Rm induced by J .

Following through the definitions, one quickly sees that the
decomposition of Rm induced by the all-pairs shortest path
problem on a graph G with m parameterized edges is in fact
the same tropical hypersurface introduced in [1]. We observe
that many natural parametric problems on graphs may also
be phrased in terms of tropical equations, and hence will
decompose parameter space into cells given by a tropical
hypersurface. We will term such problems as tropical graph
problems. We now give a (certainly non-exhaustive) list of
tropical graph problems:

• Single source shortest path
• All-pairs shortest path
• Minimum spanning tree
• Traveling salesman
• Max-flow

Knowing that a problem is a tropical graph problem immedi-
ately provides a lot of information about the parameter space
decomposition. This is due to the regularity of tropical hyper-
surfaces: for instance, we are guaranteed that for any solution
α ∈ J the region assigned to α is a convex, m-dimensional
set with piecewise linear boundary, i.e. convex polytopes.
Furthermore, we know almost all parameter vectors have a
unique solution.12

11Note that two paths pxy and sxy can be equivalent in terms of having
optimal path length and allowing equivalently optimal paths to branch off of
them as well. Recall that in Section 2, any point on the boundary between
two cells had at least two equivalent shortest path trees. Hence some weight
vectors will map to multiple equally optimal solutions.
12Note that parameter vectors on the boundary between two cells will
correspond to two or more different solutions in J .
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Figure 10: Waveform associated with the Verilog Tropical ALU implementation.

R0 = 0x00000000; //register file
R1 = 0x80000000; //initialization
R2 = 0xFFFFFFFF;
R3 = 0x7FFFFFFF;
R4 = 0x00000001;

R0 = R1 & R2;
R0 = R1 | R2;
R0 = min(R3,R4); //oplus
R0 = R3 + R4; //otimes
R0 = min(R1,R2);

Figure 11: High level representation of program being
demonstrated in the waveform of Figure 10.

This structure makes such decompositions of parameter space
much easier to determine with algorithms, using for instance
the algorithm described in the previous sections, or with
substantial modification.

We are also guaranteed that if we take natural “combinations”
of such problems, the resulting parameter space decomposi-
tion is once again tropical. In particular, consider the natural
definition of a product of problems, i.e. a problem with
solution set given by a Cartesian product of solution sets for
other problems. As natural examples of problems that can be
phrased as products of simpler problems, note that shortest
path spanning tree may be written as a product of instances of
shortest path with fixed endpoints, and that all pairs shortest
path may in turn be written as a product of instances of
shortest path spanning tree. The following lemma is trivial
from a tropical geometry perspective, but is worth mentioning
in our new language:

Lemma 3.6. Suppose that PI , PJ are problems with assign-
ments given by tropical polynomials hI , hJ : Rm → T. Then
the assignment for PI×PJ is given by the tropical polynomial
hI

⊗
hJ .

Though one may always define such a product regardless of
whether the problems are tropical, it is comforting to know
that tropical problems are closed under this operation.

More General Problems

From the above discussion, one might be inclined to think
that all natural parameterized graph optimization problems
are tropical. This is not the case, and a prominent example
of problems that do not have this property arise from various
centrality measures.

Example 3.7. A parameterized centrality problem on a
weighted graph G has as its solution set all orderings of
vertices, where we allow for orderings where two or more
vertices to “tie”. The assignment h : Rm → J maps a
parameter vector w to the ordering on vertices induced by a
chosen centrality measure computed onGwith weights given
by w.

Commonly used centrality measures include eigenvector,
Katz and betweenness centrality, see [15]. For a given
centrality problem with assignment h, we may consider the
decomposition induced by orderings on the vertex set. How-
ever, we find that the cells in this decomposition are in general
no longer convex with piecewise linear boundaries.

Example 3.8. Consider parameterized eigenvector centrality
on a parameterized graph G. Suppose that G has m pa-
rameterized edges, and consider the parameterized adjacency
matrix AG(w), which is a function of w ∈ Rm. Then we
see that both the maximum eigenvalue and the corresponding
maximal eigenvector

AG(w)v = λmax(w)v

depends on w. Notice that by definition of the adjacency
matrix, the ith entry of the eigenvector vi may be identified
with the ith vertex of G. The eigenvector centrality of a
graph is defined to be the ordering imposed on the vertices
by the “score function” given by the entries of v, which in the
parametric regime is a function of our parameter vector.

We see that solution regions are defined by the (in)equalities
of the form ∑

j

aij(w)vi = λmax(w)vi

vi(w) ≥ vk(w), i 6= k.

These (in)equalities almost look like the defining (in)equalities
of a semi-algebraic set, and indeed if λmax were constant this
would be the case. However, λmax depends on the parametric
characteristic polynomial of the matrix AG(w) and hence is
(generically) not a polynomial.

Example 3.9. Despite the difficulties presented by the gen-
eral case, for certain graph architectures one is able to com-
pute the corresponding eigenvector centrality decomposition
without too much difficulty. For instance, consider the star
graph with n edges, i.e. the graph with n + 1 vertices
such that there is an edge from the first vertex to all other
vertices, and no other vertices are connected by edges. The
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parameter space of the weight space is Rn. The principal
eigenvector is given by (1,

w1

||w||2
,
w2

||w||2
, . . . ,

wn
||w||2

) where

||w||2 =
√
w2

1 + w2
2 . . .+ w2

n. Thus we see that every
possible permutation σ ∈ Sn+1 that fixes 1 is a possible
solution for this problem, as the ranking is ordered by the
ordering on the weights, apart from vertex 1 which is always
central. The set of these are in bijection with the symmetric
group Sn, and hence we define the set of regions

Uσ = {(w1, w2, . . . , wn) ∈ Rn | wσ(i) ≥ wσ(j), σ ∈ Sn},

which define the regions of parameter space for which σ is
the ordering induced by the eigenvector.

The situation for Katz centrality is similarly complicated. It is
interesting to note that Katz centrality depends on a parameter
such that when one takes an appropriate limit, eigenvector
centrality is recovered, and hence we expect their respective
parameter space decompositions to converge as well.

In contrast, the betweenness centrality decomposition yields
a description that, while not tropical, can be constructed using
convex polytopal regions:

Theorem 3.10. Let β∗ be the assignment induced by be-
tweenness centrality. Then for all α ∈ J the region h−1(α) is
a union of convex polytopal regions, glued along (potentially
empty) faces. In other words, h−1(α) is a polytope complex.

Proof: We may record the betweenness of N nodes as a
vector in β(w) ∈ RN , which we write this way to emphasize
the w ∈ Rm dependence. From this, we obtain a solution
(for parameter w) to the betweenness centrality problem by
considering the ordering of entries of β(w), which we have
denoted β∗(w).

Consider the betweenness of a vertex v ∈ V , which we
denote β(w)v . Recall that this is given by the formula

∑
s6=v 6=t

σst(v)

σst
.

The key observation is that both σst and σst(v) are deter-
mined solutions to the all-pairs-shortest path problem, as
both quantities are given by the size of subsets of the set of
n(n− 1)

2
optimal paths for a given weight vector. Hence,

we see if β(w)v ≥ β(w)q for v, q ∈ V , then this inequality
holds for all vectorsw′ in the same region asw in the all-pairs
shortest path problem. Thus, β∗(w) : Rm → J defines a
face-wise constant function on the decomposition induced on
Rm by the all-pairs shortest path problem on G. There may
be multiple cells of the all-pairs shortest path problem that
induce the same ordering α, hence (β∗)−1(α) may be a union
of polytopes, which are necessarily glued along (possibly
empty) faces as they are chosen from a decomposition where
all regions have this property.

The authors are currently conducting a deeper investigation of
the geometry of decompositions induced by various centrality
problems.

Graph Symmetries and Parameter Space Decompositions

A challenge with constructing or even sampling parameter
space decompositions is that for any graph of reasonable size
one is quickly confronted with a high dimensional problem.
However, if the graph topology in question has nontrivial
automorphisms, we may be able to leverage the additional
symmetry to simplify the decomposition, provided that the
particular problem in question respects these symmetries. For
simplicity, we will assume that all edges of G are parametric.

Definition 3.11. Let G = (V,E) be a graph. A graph
automorphism ψ is a bijection from G to itself such that
if v and w are adjacent in G then ψ(v) and ψ(w) are also
adjacent. The automorphisms of a graph form a group, which
we denote Aut(G).

Lemma 3.12. Let G be a graph with m edges, all of which
are parameteric. Then for all such G (outside of 3 cases),
ψ ∈ Aut(G) induces an automorphism on parameter space
Rm, where the automorphism is given by permuting the
coordinates of Rm.

Proof: For all graphs (excluding 3 cases that are outlined in
Corollary 3.3 of [16]), the vertex automorphism group of a
graph is isomorphic to the edge automorphism group of the
graph (i.e. automorphisms of its line graph). Edge automor-
phisms are bijections from the edge set to itself satisfying
certain conditions, and hence they induce bijections on the
edge variables.

Proposition 3.13. Let P be a problem in the following set
of parametric graph problems: End-to-end shortest path,
shortest path tree, traveling salesman tour, all pairs shortest
path, betweenness centrality, Katz centrality, eigenvector
centrality. Let h : Rm → J be the assignment for P .
Then there is an action of Aut(G) on J that commutes with
the action of Aut(G) on Rm, i.e. such that ψ(h−1(x)) =
h−1(ψ(x)) for all ψ ∈ Aut(G).

Proof: We will prove the results for all-pairs shortest path and
for eigenvector centrality and comment that the other cases
follow similarly.

Suppose that x is a solution to the end-to-end shortest path
problem between vertex i and vertex j with respect to pa-
rameter vector w = (w1, w2, . . . , wm). Then x is a path
pij = vi1vi2 . . . vil. ψ ∈ Aut(G) acts on paths in G, by
mapping pij to ψ(pij), where

ψ(pij) =ψ(vi1)ψ(vi2) . . . ψ(vil)

=vψ(i1)vψ(i2) . . . vψ(il),

where we have written the action in a way to emphasize
the fact that graph automorphisms can be viewed as certain
relabelings of the vertex set. We denote the induced action
on labels as ψ. It is clear that pij is optimal for w iff ψpij
is optimal for (wψ(1), wψ(2), . . . , wψ(n)), which shows that
h−1(ψ(x)) = ψ(h−1(x)) and proves the result for end-to-
end shortest path. Now let x be a solution to all-pairs shortest
path. Hence x is a union paths pij for each i, j ∈ V , and by
defining the action of ψ to be the diagonal action on the union
of these paths, we see that the same result holds for all-pairs
shortest path.

For eigenvector centrality, note that the action ofψ ∈ Aut(G)
on G permutes the columns and rows of the adjacency matrix
A of G. Hence we see if Ax = λx then ψ(Ax′) = λx′,
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9where x′ is the vector with x′i = xψ(i). Thus we may define
an induced action ψ on eigenvectors of A, and see that this
commutes with the action of ψ on G.

Corollary 3.14. Let v ∈ V , and let h(w) = σw denote the
solution to any of the parameterized centrality problems in
the above proposition, i.e. σw is the induced ordering from V
to [n]. Then if σw(v) is constant as a function of w, then v is
fixed by all automorphisms of G.

An example demonstrating the above corollary is the central
vertex in the n-star graph. A similar result holds for solutions
to the various routing problems in the Proposition 3.13, and
more sophisticated statements relating the action of Aut(G)
to the symmetries of parameter space exist. In theory,
incorporating these symmetries into algorithms such as the
one described in [1] should result in faster computations,
as it will only be necessary to compute a subspace of the
total decomposition, and then use the action of Aut(G) on
parameter space to reconstruct the rest.

4. STABILITY OF SOLUTION SETS
Recall that h : Rm → J . Considering the geometry
of h−1(x)13 gives rise to new perspectives for parametric
problems on graphs. In some sense, the size and shape of
the set h−1(x) corresponding to a solution x ∈ J should
reflect how “stable” to perturbation this optimal solution is.
Consider for instance a convex solution set h−1(x) = U with
large volume and “small” boundary measure. Then one can
reasonably assume that small perturbations of most vectors in
U will stay inside U . In contrast, if U has small volume, or
has large volume but with a comparably large boundary (e.g.
if U looks like a tree) then we lose such guarantees.

To make these ideas precise, we will need to appeal to the
language of measures. Informally, a measure is a function
that assigns a mass to a set. One of their primary applications
is in probability theory, where a (normalized) measure on
a space of possible events provides a way of assigning a
probability to a subset of events occurring. With this in mind,
consider the following definitions:

Definition 4.1. Let µ be a measure on a measurable space,
and let f : X → Y be a measurable map. The pushforward
measure f∗(µ) is defined by setting f∗µ(A) = µ(f−1(A))
for all measurable A ⊂ Y .

Definition 4.2. Let µ be a compactly supported measure on
Rm, let G be a graph with m parameterized edges. Let
h : Rm → J be the assignment for a problem P with solution
set J . Then we say h∗µ is the measured induced by h relative
µ.

Before proceeding, we explain two natural ways one may
obtain measures induced on parameter space in a networking
setting. For concreteness, suppose our system of interest is
modeled by n agents arranged on a graph with fixed topology,
but possibly changing edge weights, which may represent for
instance distance or available channel capacity.

Example 4.3. Suppose that our edge weights are subject to
uncertainty, due to environmental factors or to account for
the possibility transmission errors. This can be modeled by
assigning a probability measure µi to the edge i, and letting

13Called the fiber of h at x.

µ =
m∏
i=1

µi. For instance, in the standard white noise model

for communication channels, each µi is a one-dimensional
Gaussian distribution, and µ is thus an m-dimensional Gaus-
sian. µ induces a measure on each cell h−1(x) in our
decomposition, corresponding to how often x is the optimal
solution given the presence of uncertainty modeled by µ.

Example 4.4. Even in a completely deterministic system,
time-evolving edge weights induce a measure on parameter
space. For instance, suppose that our edge weights evolve
periodically in time. We may view then view the evolution of
this system as a closed loop C : R → Rm with period T in
Rm. This defines a measure µC on our solution set J , such
that for any x ∈ J we have

µC(h
−1(x)) =

∫
h−1(x)

C(t)dt,

i.e. the measure induced by the amount of time our system
spends in the region h−1(x).

We now offer two different definitions of stability for a
solution set h−1(x), relative to an induced measure h∗µ.

Definition 4.5. Let h : Rm → J be a parameterized problem
on G, and let µ be a compactly supported measure on Rm.
Then for x, y ∈ J , we say that x is more stable than y if
h∗µ(x) ≥ h∗µ(y). We call x∗ = argmaxx∈J{h∗(µ)(x)}
the maximally stable solution.

Definition 4.6. Let h : Rm → J be a parameterized problem
on G, and let µ be a compactly supported measure on Rm.
For each x ∈ J and ε > 0, let Wε(x) be the subset of h−1(x)
of all y such that Bε(y) ⊂ h−1(x). Then for x, y ∈ J , we
say that x is more ε-stable than y if µ(Wε(x)) ≥ µ(Wε(y)).
x∗ = argmaxx∈J{Wε(x)} is the maximally ε-stable solu-
tion.

Stability describes the optimality of a solution up to uncer-
tainty captured by the probability distribution µ. ε-stability
also captures this, but additionally accounts for the possibility
of a small perturbation of the inputs. This more closely
mimics the stability described in the beginning of this sec-
tion, in that sets with relatively small boundary measure are
necessarily more stable. Notice that as ε → 0, ε-stability
recovers stability.

Even for tropical graph problems, determining stability and ε-
stability is computationally nontrivial. Exact solutions to this
problem in full generality is at least as difficult as computing
the volume of an n-dimensional polytope, which is known
to be computationally challenging [17]. However, there
are known to be more efficient approximation schemes (e.g.
[18]), and it would be interesting to see how such schemes
perform on computing stability or ε-stability from systems
arising from data.

5. CONCLUSION AND FUTURE WORK
Tropical geometry offers a new potential avenue for ap-
proaching delay tolerant networking. The main potential
comes from the fact that tropical geometry is a natural setting
for studying optimization problems, many of which can be
expressed tropically [19]. As demonstrated above, some
normally intractable problems become feasible in the tropical
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setting. Moreover, tropical approaches have been verified to
work for scheduling trains [12] which are similar to delay
tolerant networks in many ways. One similarity is that
trains may have to wait in certain stations, similar to how
some bundles have to be buffered at certain nodes. Another
similarity is that a train may travel along a path without end
to end connectivity, similar to the nature of delay tolerant
networks.

The algorithms and framework detailed in this paper extend
the utility from trains and traditional linear optimization
towards the temporal setting of DTNs, and can be used to
analyze current and future networks. For example, given
a network metric, one may ask for the optimal way to add
another communication node.

Because tropical geometry lends itself to computation, in-
cluding by FPGA, local algorithms that use a tropical-
geometric approach to decision-making are feasible, offering
a direct path to implementation.

We have also shown how the perspective of studying a
parametric problem on a graph through the geometry of its
parameter space bears fruit even outside the strict tropical
framework. To our knowledge this perspective is underde-
veloped in the temporal graph literature.

We end with suggestions for future directions:

Future Work

• Solving temporal networking problems could be made
possible through the application of parametric graph opti-
mization. One way to demonstrate this would be to simulate
a space network using orbital analysis software, and then
attempt to make routing decisions based on the state of the
network over time.
• Determine stability of an optimal solution for mild per-
turbations of the associated graph in parameter space. How
much error are we allowed to have in a given network to still
meet a threshold quality of service?
• Study the case when edge weights are unpredictable, and
instead when edge stability follows a probability distribution
with respect to time. What modifications are needed to our
approach for this case?
• Study what factors (e.g. bit rate, latency, network demand)
are appropriate for analysis as parameters in the context of
our approach.
• Finish off Verilog Tropical ALU by adding signed arith-
metic, logical and arithmetic shifts, pipeline, flow control
(branches, jumps), branch prediction, co-processors, and
cache. Implement companion Python matrix multiplication
programs for driving an FPGA with several instances of a
Tropical ALU (CPU) onboard.
• Investigate the behavior along boundaries of cells in the
single source shortest path case. Define a (co)sheaf over the
cells and their boundaries that maps trees over these cells.
• Extend the Joswig implementation to higher parameter
dimensions, arbitrary graphs, and the ability to solve for trees
in time intervals when the parameters are given by arbitrary
continuous functions in parameter space.
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[17] I. Bárány and Z. Füredi, “Computing the volume is
difficult,” Discrete & Computational Geometry, vol. 2,
1987. [Online]. Available: https://link.springer.com/
article/10.1007/BF02187886

[18] M. Dyer, A. Frieze, and R. Kannan, “A random
polynomial time algorithm for approximating the
volume of convex bodies,” Journal of the ACM, 1988.
[Online]. Available: https://www.math.cmu.edu/∼af1p/
Texfiles/oldvolume.pdf

[19] M. Joswig, “Optimization and tropical geometry:
Exercises and problems 1,” April 2019. [Online].
Available: https://page.math.tu-berlin.de/∼joswig/
teaching/VL+PR-Optimization+and+Tropical+
Geometry-SS19/problems1.pdf

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2024 at 19:05:44 UTC from IEEE Xplore.  Restrictions apply. 



11Jacob Cleveland is a Senior studying
Mathematics and Computer Engineering
at the University of Nebraska at Om-
aha. They joined the Secure Networks,
System Integration and Test Branch as
a Pathways Intern at NASA Glenn Re-
search Center in 2020. Since joining,
they have performed several research
projects applying pure mathematics to
engineering problems such as network-
ing in space, star tracking, and artificial

neural networks.

Alan Hylton should probably be
designing tube audio circuits, but in-
stead directs Delay Tolerant Networking
(DTN) research and development at the
NASA Glenn Research Center, where he
is humbled to work with his powerful
and multidisciplinary team. His formal
education is in mathematics from Cleve-
land State University and Lehigh Uni-
versity, and he considers it his mission to
advocate for students. Where possible,

he creates venues for mathematicians to work on applied
problems, who add an essential diversity to the group.

Robert Short earned his PhD in mathe-
matics from Lehigh University in 2018.
He worked as a Visiting Assistant Pro-
fessor of Mathematics at John Carroll
University until he joined the Secure
Networks, System Integration and Test
Branch at NASA Glenn Research Center
in 2020. His research interests lie in the
intersection of abstract mathematics and
real world applications. Currently, his
focus is on the foundations of network-

ing theory and how to efficiently route data through a network
using local information.

Brendan Mallery is a PhD student
studying mathematics at Tufts Univer-
sity. Previously he received a Masters
in Mathematics from the University at
Albany, SUNY in 2020, and a Bache-
lors in Mathematics and Chemistry from
Bowdoin College in 2018. His research
interests include geometric group theory,
optimal transport and applied sheaf the-
ory.

Robert Green is a 2nd year math-
ematics PhD student at the University
at Albany. He is studying topics in-
cluding applications of Topological Data
Analysis (TDA) and Graph Theory to
space networking problems under Justin
Curry. He previously completed his
undergraduate and masters degrees in
mathematics from American University
where he worked with Michael Robin-
son on topics such as TDA and Signal

Processing.

Justin Curry is an Assistant Profes-
sor of Mathematics and Statistics at the
University at Albany, SUNY. Before ar-
riving at Albany in 2017, he was a Vis-
iting Assistant Professor at Duke Uni-
versity. Professor Curry earned his PhD
in mathematics from the University of
Pennsylvania in 2014, under the direc-
tion of Robert Ghrist. His research inter-
ests include the use of category theory
in applied mathematics, with particular

emphasis on applied sheaf theory, and inverse problems in
topological data analysis (TDA).

Devavrat Vivek Dabke is a 4th year
PhD Candidate at Princeton University
in Applied and Computational Mathe-
matics under the supervision of Bernard
Chazelle. His primary research is in nat-
ural algorithms, which intersects graph
theory, probability, and machine learn-
ing. He is most interested in the theory
and applications of dynamic networks
and relishes the opportunity to convert
everyday problems into graphs. He en-

joys figure skating, long walks, transportation, and lakes.

Olivia Freides is pursuing a masters
in Data Science at American University
with a concentration in Environmental
Science. She earned her bachelors of
science in Statistics in 2021 from Amer-
ican University. She was an applications
of pure mathematics intern at NASA
Glenn research center in 2021, and is a
graduate researcher in the mathematics
and statistics department at American
University. Olivia’s research interests

span from applied mathematics and topology to environmen-
tal science and remote sensing.

Authorized licensed use limited to: Princeton University. Downloaded on January 20,2024 at 19:05:44 UTC from IEEE Xplore.  Restrictions apply. 


